File size: 25,996 Bytes
448ebbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
"""
Compute metrics of the performance of the masker using a set of ground-truth labels

run eval_masker.py --model "/miniscratch/_groups/ccai/checkpoints/model/"

"""
print("Imports...", end="")
import os
import os.path
from argparse import ArgumentParser
from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from comet_ml import Experiment
import torch
import yaml
from skimage.color import rgba2rgb
from skimage.io import imread, imsave
from skimage.transform import resize
from skimage.util import img_as_ubyte
from torchvision.transforms import ToTensor

from climategan.data import encode_mask_label
from climategan.eval_metrics import (
    masker_classification_metrics,
    get_confusion_matrix,
    edges_coherence_std_min,
    boxplot_metric,
    clustermap_metric,
)
from climategan.transforms import PrepareTest
from climategan.trainer import Trainer
from climategan.utils import find_images

dict_metrics = {
    "names": {
        "tpr": "TPR, Recall, Sensitivity",
        "tnr": "TNR, Specificity, Selectivity",
        "fpr": "FPR",
        "fpt": "False positives relative to image size",
        "fnr": "FNR, Miss rate",
        "fnt": "False negatives relative to image size",
        "mpr": "May positive rate (MPR)",
        "mnr": "May negative rate (MNR)",
        "accuracy": "Accuracy (ignoring may)",
        "error": "Error (ignoring may)",
        "f05": "F0.05 score",
        "precision": "Precision",
        "edge_coherence": "Edge coherence",
        "accuracy_must_may": "Accuracy (ignoring cannot)",
    },
    "threshold": {
        "tpr": 0.95,
        "tnr": 0.95,
        "fpr": 0.05,
        "fpt": 0.01,
        "fnr": 0.05,
        "fnt": 0.01,
        "accuracy": 0.95,
        "error": 0.05,
        "f05": 0.95,
        "precision": 0.95,
        "edge_coherence": 0.02,
        "accuracy_must_may": 0.5,
    },
    "key_metrics": ["f05", "error", "edge_coherence", "mnr"],
}

print("Ok.")


def parsed_args():
    """Parse and returns command-line args

    Returns:
        argparse.Namespace: the parsed arguments
    """
    parser = ArgumentParser()
    parser.add_argument(
        "--model",
        type=str,
        help="Path to a pre-trained model",
    )
    parser.add_argument(
        "--images_dir",
        default="/miniscratch/_groups/ccai/data/omnigan/masker-test-set/imgs",
        type=str,
        help="Directory containing the original test images",
    )
    parser.add_argument(
        "--labels_dir",
        default="/miniscratch/_groups/ccai/data/omnigan/masker-test-set/labels",
        type=str,
        help="Directory containing the labeled images",
    )
    parser.add_argument(
        "--image_size",
        default=640,
        type=int,
        help="The height and weight of the pre-processed images",
    )
    parser.add_argument(
        "--max_files",
        default=-1,
        type=int,
        help="Limit loaded samples",
    )
    parser.add_argument(
        "--bin_value", default=0.5, type=float, help="Mask binarization threshold"
    )
    parser.add_argument(
        "-y",
        "--yaml",
        default=None,
        type=str,
        help="load a yaml file to parametrize the evaluation",
    )
    parser.add_argument(
        "-t", "--tags", nargs="*", help="Comet.ml tags", default=[], type=str
    )
    parser.add_argument(
        "-p",
        "--plot",
        action="store_true",
        default=False,
        help="Plot masker images & their metrics overlays",
    )
    parser.add_argument(
        "--no_paint",
        action="store_true",
        default=False,
        help="Do not log painted images",
    )
    parser.add_argument(
        "--write_metrics",
        action="store_true",
        default=False,
        help="If True, write CSV file and maps images in model's path directory",
    )
    parser.add_argument(
        "--load_metrics",
        action="store_true",
        default=False,
        help="If True, load predictions and metrics instead of re-computing",
    )
    parser.add_argument(
        "--prepare_torch",
        action="store_true",
        default=False,
        help="If True, pre-process images as torch tensors",
    )
    parser.add_argument(
        "--output_csv",
        default=None,
        type=str,
        help="Filename of the output CSV with the metrics of all models",
    )

    return parser.parse_args()


def uint8(array):
    return array.astype(np.uint8)


def crop_and_resize(image_path, label_path):
    """
    Resizes an image so that it keeps the aspect ratio and the smallest dimensions
    is 640, then crops this resized image in its center so that the output is 640x640
    without aspect ratio distortion

    Args:
        image_path (Path or str): Path to an image
        label_path (Path or str): Path to the image's associated label

    Returns:
        tuple((np.ndarray, np.ndarray)): (new image, new label)
    """

    img = imread(image_path)
    lab = imread(label_path)

    # if img.shape[-1] == 4:
    #     img = uint8(rgba2rgb(img) * 255)

    # TODO: remove (debug)
    if img.shape[:2] != lab.shape[:2]:
        print(
            "\nWARNING: shape mismatch: im -> ({}) {}, lab -> ({}) {}".format(
                img.shape[:2], image_path.name, lab.shape[:2], label_path.name
            )
        )
        # breakpoint()

    # resize keeping aspect ratio: smallest dim is 640
    i_h, i_w = img.shape[:2]
    if i_h < i_w:
        i_size = (640, int(640 * i_w / i_h))
    else:
        i_size = (int(640 * i_h / i_w), 640)

    l_h, l_w = img.shape[:2]
    if l_h < l_w:
        l_size = (640, int(640 * l_w / l_h))
    else:
        l_size = (int(640 * l_h / l_w), 640)

    r_img = resize(img, i_size, preserve_range=True, anti_aliasing=True)
    r_img = uint8(r_img)

    r_lab = resize(lab, l_size, preserve_range=True, anti_aliasing=False, order=0)
    r_lab = uint8(r_lab)

    # crop in the center
    H, W = r_img.shape[:2]

    top = (H - 640) // 2
    left = (W - 640) // 2

    rc_img = r_img[top : top + 640, left : left + 640, :]
    rc_lab = (
        r_lab[top : top + 640, left : left + 640, :]
        if r_lab.ndim == 3
        else r_lab[top : top + 640, left : left + 640]
    )

    return rc_img, rc_lab


def plot_images(
    output_filename,
    img,
    label,
    pred,
    metrics_dict,
    maps_dict,
    edge_coherence=-1,
    pred_edge=None,
    label_edge=None,
    dpi=300,
    alpha=0.5,
    vmin=0.0,
    vmax=1.0,
    fontsize="xx-small",
    cmap={
        "fp": "Reds",
        "fn": "Reds",
        "may_neg": "Oranges",
        "may_pos": "Purples",
        "pred": "Greens",
    },
):
    f, axes = plt.subplots(1, 5, dpi=dpi)

    # FPR (predicted mask on cannot flood)
    axes[0].imshow(img)
    fp_map_plt = axes[0].imshow(  # noqa: F841
        maps_dict["fp"], vmin=vmin, vmax=vmax, cmap=cmap["fp"], alpha=alpha
    )
    axes[0].axis("off")
    axes[0].set_title("FPR: {:.4f}".format(metrics_dict["fpr"]), fontsize=fontsize)

    # FNR (missed mask on must flood)
    axes[1].imshow(img)
    fn_map_plt = axes[1].imshow(  # noqa: F841
        maps_dict["fn"], vmin=vmin, vmax=vmax, cmap=cmap["fn"], alpha=alpha
    )
    axes[1].axis("off")
    axes[1].set_title("FNR: {:.4f}".format(metrics_dict["fnr"]), fontsize=fontsize)

    # May flood
    axes[2].imshow(img)
    if edge_coherence != -1:
        title = "MNR: {:.2f} | MPR: {:.2f}\nEdge coh.: {:.4f}".format(
            metrics_dict["mnr"], metrics_dict["mpr"], edge_coherence
        )
    #         alpha_here = alpha / 4.
    #         pred_edge_plt = axes[2].imshow(
    #             1.0 - pred_edge, cmap="gray", alpha=alpha_here
    #         )
    #         label_edge_plt = axes[2].imshow(
    #             1.0 - label_edge, cmap="gray", alpha=alpha_here
    #         )
    else:
        title = "MNR: {:.2f} | MPR: {:.2f}".format(mnr, mpr)  # noqa: F821
    #         alpha_here = alpha / 2.
    may_neg_map_plt = axes[2].imshow(  # noqa: F841
        maps_dict["may_neg"], vmin=vmin, vmax=vmax, cmap=cmap["may_neg"], alpha=alpha
    )
    may_pos_map_plt = axes[2].imshow(  # noqa: F841
        maps_dict["may_pos"], vmin=vmin, vmax=vmax, cmap=cmap["may_pos"], alpha=alpha
    )
    axes[2].set_title(title, fontsize=fontsize)
    axes[2].axis("off")

    # Prediction
    axes[3].imshow(img)
    pred_mask = axes[3].imshow(  # noqa: F841
        pred, vmin=vmin, vmax=vmax, cmap=cmap["pred"], alpha=alpha
    )
    axes[3].set_title("Predicted mask", fontsize=fontsize)
    axes[3].axis("off")

    # Labels
    axes[4].imshow(img)
    label_mask = axes[4].imshow(label, alpha=alpha)  # noqa: F841
    axes[4].set_title("Labels", fontsize=fontsize)
    axes[4].axis("off")

    f.savefig(
        output_filename,
        dpi=f.dpi,
        bbox_inches="tight",
        facecolor="white",
        transparent=False,
    )
    plt.close(f)


def load_ground(ground_output_path, ref_image_path):
    gop = Path(ground_output_path)
    rip = Path(ref_image_path)

    ground_paths = list((gop / "eval-metrics" / "pred").glob(f"{rip.stem}.jpg")) + list(
        (gop / "eval-metrics" / "pred").glob(f"{rip.stem}.png")
    )
    if len(ground_paths) == 0:
        raise ValueError(
            f"Could not find a ground match in {str(gop)} for image {str(rip)}"
        )
    elif len(ground_paths) > 1:
        raise ValueError(
            f"Found more than 1 ground match in {str(gop)} for image {str(rip)}:"
            + f" {list(map(str, ground_paths))}"
        )
    ground_path = ground_paths[0]
    _, ground = crop_and_resize(rip, ground_path)
    if ground.ndim == 3:
        ground = ground[:, :, 0]
    ground = (ground > 0).astype(np.float32)
    return torch.from_numpy(ground).unsqueeze(0).unsqueeze(0).cuda()


def get_inferences(
    image_arrays, model_path, image_paths, paint=False, bin_value=0.5, verbose=0
):
    """
    Obtains the mask predictions of a model for a set of images

    Parameters
    ----------
    image_arrays : array-like
        A list of (1, CH, H, W) images

    image_paths: list(Path)
        A list of paths for images, in the same order as image_arrays

    model_path : str
        The path to a pre-trained model

    Returns
    -------
    masks : list
        A list of (H, W) predicted masks
    """
    device = torch.device("cuda:0")
    torch.set_grad_enabled(False)
    to_tensor = ToTensor()

    is_ground = "ground" in Path(model_path).name
    is_instagan = "instagan" in Path(model_path).name

    if is_ground or is_instagan:
        # we just care about he painter here
        ground_path = model_path
        model_path = (
            "/miniscratch/_groups/ccai/experiments/runs/ablation-v1/out--38858350"
        )

    xs = [to_tensor(array).unsqueeze(0) for array in image_arrays]
    xs = [x.to(torch.float32).to(device) for x in xs]
    xs = [(x - 0.5) * 2 for x in xs]
    trainer = Trainer.resume_from_path(
        model_path, inference=True, new_exp=None, device=device
    )
    masks = []
    painted = []
    for idx, x in enumerate(xs):
        if verbose > 0:
            print(idx, "/", len(xs), end="\r")

        if not is_ground and not is_instagan:
            m = trainer.G.mask(x=x)
        else:
            m = load_ground(ground_path, image_paths[idx])

        masks.append(m.squeeze().cpu())
        if paint:
            p = trainer.G.paint(m > bin_value, x)
            painted.append(p.squeeze().cpu())
    return masks, painted


if __name__ == "__main__":
    # -----------------------------
    # -----  Parse arguments  -----
    # -----------------------------
    args = parsed_args()
    print("Args:\n" + "\n".join([f"    {k:20}: {v}" for k, v in vars(args).items()]))

    # Determine output dir
    try:
        tmp_dir = Path(os.environ["SLURM_TMPDIR"])
    except Exception as e:
        print(e)
        tmp_dir = Path(input("Enter tmp output directory: ")).resolve()

    plot_dir = tmp_dir / "plots"
    plot_dir.mkdir(parents=True, exist_ok=True)

    # Build paths to data
    imgs_paths = sorted(
        find_images(args.images_dir, recursive=False), key=lambda x: x.name
    )
    labels_paths = sorted(
        find_images(args.labels_dir, recursive=False),
        key=lambda x: x.name.replace("_labeled.", "."),
    )
    if args.max_files > 0:
        imgs_paths = imgs_paths[: args.max_files]
        labels_paths = labels_paths[: args.max_files]

    print(f"Loading {len(imgs_paths)} images and labels...")

    # Pre-process images: resize + crop
    # TODO: ? make cropping more flexible, not only central
    if not args.prepare_torch:
        ims_labs = [crop_and_resize(i, l) for i, l in zip(imgs_paths, labels_paths)]
        imgs = [d[0] for d in ims_labs]
        labels = [d[1] for d in ims_labs]
    else:
        prepare = PrepareTest()
        imgs = prepare(imgs_paths, normalize=False, rescale=False)
        labels = prepare(labels_paths, normalize=False, rescale=False)

        imgs = [i.squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8) for i in imgs]
        labels = [
            lab.squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8) for lab in labels
        ]
    imgs = [rgba2rgb(img) if img.shape[-1] == 4 else img for img in imgs]
    print(" Done.")

    # Encode labels
    print("Encode labels...", end="", flush=True)
    # HW label
    labels = [np.squeeze(encode_mask_label(label, "flood")) for label in labels]
    print("Done.")

    if args.yaml:
        y_path = Path(args.yaml)
        assert y_path.exists()
        assert y_path.suffix in {".yaml", ".yml"}
        with y_path.open("r") as f:
            data = yaml.safe_load(f)
        assert "models" in data

        evaluations = [m for m in data["models"]]
    else:
        evaluations = [args.model]

    for e, eval_path in enumerate(evaluations):
        print("\n>>>>> Evaluation", e, ":", eval_path)
        print("=" * 50)
        print("=" * 50)

        model_metrics_path = Path(eval_path) / "eval-metrics"
        model_metrics_path.mkdir(exist_ok=True)
        if args.load_metrics:
            f_csv = model_metrics_path / "eval_masker.csv"
            pred_out = model_metrics_path / "pred"
            if f_csv.exists() and pred_out.exists():
                print("Skipping model because pre-computed metrics exist")
                continue

        # Initialize New Comet Experiment
        exp = Experiment(
            project_name="climategan-masker-metrics", display_summary_level=0
        )

        # Obtain mask predictions
        # TODO: remove (debug)
        print("Obtain mask predictions", end="", flush=True)

        preds, painted = get_inferences(
            imgs,
            eval_path,
            imgs_paths,
            paint=not args.no_paint,
            bin_value=args.bin_value,
            verbose=1,
        )
        preds = [pred.numpy() for pred in preds]
        print(" Done.")

        if args.bin_value > 0:
            preds = [pred > args.bin_value for pred in preds]

        # Compute metrics
        df = pd.DataFrame(
            columns=[
                "tpr",
                "tpt",
                "tnr",
                "tnt",
                "fpr",
                "fpt",
                "fnr",
                "fnt",
                "mnr",
                "mpr",
                "accuracy",
                "error",
                "precision",
                "f05",
                "accuracy_must_may",
                "edge_coherence",
                "filename",
            ]
        )

        print("Compute metrics and plot images")
        for idx, (img, label, pred) in enumerate(zip(*(imgs, labels, preds))):
            print(idx, "/", len(imgs), end="\r")

            # Basic classification metrics
            metrics_dict, maps_dict = masker_classification_metrics(
                pred, label, labels_dict={"cannot": 0, "must": 1, "may": 2}
            )

            # Edges coherence
            edge_coherence, pred_edge, label_edge = edges_coherence_std_min(pred, label)

            series_dict = {
                "tpr": metrics_dict["tpr"],
                "tpt": metrics_dict["tpt"],
                "tnr": metrics_dict["tnr"],
                "tnt": metrics_dict["tnt"],
                "fpr": metrics_dict["fpr"],
                "fpt": metrics_dict["fpt"],
                "fnr": metrics_dict["fnr"],
                "fnt": metrics_dict["fnt"],
                "mnr": metrics_dict["mnr"],
                "mpr": metrics_dict["mpr"],
                "accuracy": metrics_dict["accuracy"],
                "error": metrics_dict["error"],
                "precision": metrics_dict["precision"],
                "f05": metrics_dict["f05"],
                "accuracy_must_may": metrics_dict["accuracy_must_may"],
                "edge_coherence": edge_coherence,
                "filename": str(imgs_paths[idx].name),
            }
            df.loc[idx] = pd.Series(series_dict)

            for k, v in series_dict.items():
                if k == "filename":
                    continue
                exp.log_metric(f"img_{k}", v, step=idx)

            # Confusion matrix
            confmat, _ = get_confusion_matrix(
                metrics_dict["tpr"],
                metrics_dict["tnr"],
                metrics_dict["fpr"],
                metrics_dict["fnr"],
                metrics_dict["mnr"],
                metrics_dict["mpr"],
            )
            confmat = np.around(confmat, decimals=3)
            exp.log_confusion_matrix(
                file_name=imgs_paths[idx].name + ".json",
                title=imgs_paths[idx].name,
                matrix=confmat,
                labels=["Cannot", "Must", "May"],
                row_label="Predicted",
                column_label="Ground truth",
            )

            if args.plot:
                # Plot prediction images
                fig_filename = plot_dir / imgs_paths[idx].name
                plot_images(
                    fig_filename,
                    img,
                    label,
                    pred,
                    metrics_dict,
                    maps_dict,
                    edge_coherence,
                    pred_edge,
                    label_edge,
                )
                exp.log_image(fig_filename)
            if not args.no_paint:
                masked = img * (1 - pred[..., None])
                flooded = img_as_ubyte(
                    (painted[idx].permute(1, 2, 0).cpu().numpy() + 1) / 2
                )
                combined = np.concatenate([img, masked, flooded], 1)
                exp.log_image(combined, imgs_paths[idx].name)

            if args.write_metrics:
                pred_out = model_metrics_path / "pred"
                pred_out.mkdir(exist_ok=True)
                imsave(
                    pred_out / f"{imgs_paths[idx].stem}_pred.png",
                    pred.astype(np.uint8),
                )
                for k, v in maps_dict.items():
                    metric_out = model_metrics_path / k
                    metric_out.mkdir(exist_ok=True)
                    imsave(
                        metric_out / f"{imgs_paths[idx].stem}_{k}.png",
                        v.astype(np.uint8),
                    )

            # --------------------------------
            # -----  END OF IMAGES LOOP  -----
            # --------------------------------

        if args.write_metrics:
            print(f"Writing metrics in {str(model_metrics_path)}")
            f_csv = model_metrics_path / "eval_masker.csv"
            df.to_csv(f_csv, index_label="idx")

        print(" Done.")
        # Summary statistics
        means = df.mean(axis=0)
        confmat_mean, confmat_std = get_confusion_matrix(
            df.tpr, df.tnr, df.fpr, df.fnr, df.mpr, df.mnr
        )
        confmat_mean = np.around(confmat_mean, decimals=3)
        confmat_std = np.around(confmat_std, decimals=3)

        # Log to comet
        exp.log_confusion_matrix(
            file_name="confusion_matrix_mean.json",
            title="confusion_matrix_mean.json",
            matrix=confmat_mean,
            labels=["Cannot", "Must", "May"],
            row_label="Predicted",
            column_label="Ground truth",
        )
        exp.log_confusion_matrix(
            file_name="confusion_matrix_std.json",
            title="confusion_matrix_std.json",
            matrix=confmat_std,
            labels=["Cannot", "Must", "May"],
            row_label="Predicted",
            column_label="Ground truth",
        )
        exp.log_metrics(dict(means))
        exp.log_table("metrics.csv", df)
        exp.log_html(df.to_html(col_space="80px"))
        exp.log_parameters(vars(args))
        exp.log_parameter("eval_path", str(eval_path))
        exp.add_tag("eval_masker")
        if args.tags:
            exp.add_tags(args.tags)
        exp.log_parameter("model_id", Path(eval_path).name)

        # Close comet
        exp.end()

        # --------------------------------
        # -----  END OF MODElS LOOP  -----
        # --------------------------------

    # Compare models
    if (args.load_metrics or args.write_metrics) and len(evaluations) > 1:
        print(
            "Plots for comparing the input models will be created and logged to comet"
        )

        # Initialize New Comet Experiment
        exp = Experiment(
            project_name="climategan-masker-metrics", display_summary_level=0
        )
        if args.tags:
            exp.add_tags(args.tags)

        # Build DataFrame with all models
        print("Building pandas DataFrame...")
        models_df = {}
        for (m, model_path) in enumerate(evaluations):
            model_path = Path(model_path)
            with open(model_path / "opts.yaml", "r") as f:
                opt = yaml.safe_load(f)
            model_feats = ", ".join(
                [
                    t
                    for t in sorted(opt["comet"]["tags"])
                    if "branch" not in t and "ablation" not in t and "trash" not in t
                ]
            )
            model_id = f"{model_path.parent.name[-2:]}/{model_path.name}"
            df_m = pd.read_csv(
                model_path / "eval-metrics" / "eval_masker.csv", index_col=False
            )
            df_m["model"] = [model_id] * len(df_m)
            df_m["model_idx"] = [m] * len(df_m)
            df_m["model_feats"] = [model_feats] * len(df_m)
            models_df.update({model_id: df_m})
        df = pd.concat(list(models_df.values()), ignore_index=True)
        df["model_img_idx"] = df.model.astype(str) + "-" + df.idx.astype(str)
        df.rename(columns={"idx": "img_idx"}, inplace=True)
        dict_models_labels = {
            k: f"{v['model_idx'][0]}: {v['model_feats'][0]}"
            for k, v in models_df.items()
        }
        print("Done")

        if args.output_csv:
            print(f"Writing DataFrame to {args.output_csv}")
            df.to_csv(args.output_csv, index_label="model_img_idx")

        # Determine images with low metrics in any model
        print("Constructing filter based on metrics thresholds...")
        idx_not_good_in_any = []
        for idx in df.img_idx.unique():
            df_th = df.loc[
                (
                    # TODO: rethink thresholds
                    (df.tpr <= dict_metrics["threshold"]["tpr"])
                    | (df.fpr >= dict_metrics["threshold"]["fpr"])
                    | (df.edge_coherence >= dict_metrics["threshold"]["edge_coherence"])
                )
                & ((df.img_idx == idx) & (df.model.isin(df.model.unique())))
            ]
            if len(df_th) > 0:
                idx_not_good_in_any.append(idx)
        filters = {"all": df.img_idx.unique(), "not_good_in_any": idx_not_good_in_any}
        print("Done")

        # Boxplots of metrics
        print("Plotting boxplots of metrics...")
        for k, f in filters.items():
            print(f"\tDistribution of [{k}] images...")
            for metric in dict_metrics["names"].keys():
                fig_filename = plot_dir / f"boxplot_{metric}_{k}.png"
                if metric in ["mnr", "mpr", "accuracy_must_may"]:
                    boxplot_metric(
                        fig_filename,
                        df.loc[df.img_idx.isin(f)],
                        metric=metric,
                        dict_metrics=dict_metrics["names"],
                        do_stripplot=True,
                        dict_models=dict_models_labels,
                        order=list(df.model.unique()),
                    )
                else:
                    boxplot_metric(
                        fig_filename,
                        df.loc[df.img_idx.isin(f)],
                        metric=metric,
                        dict_metrics=dict_metrics["names"],
                        dict_models=dict_models_labels,
                        fliersize=1.0,
                        order=list(df.model.unique()),
                    )
                exp.log_image(fig_filename)
        print("Done")

        # Cluster Maps
        print("Plotting clustermaps...")
        for k, f in filters.items():
            print(f"\tDistribution of [{k}] images...")
            for metric in dict_metrics["names"].keys():
                fig_filename = plot_dir / f"clustermap_{metric}_{k}.png"
                df_mf = df.loc[df.img_idx.isin(f)].pivot("img_idx", "model", metric)
                clustermap_metric(
                    output_filename=fig_filename,
                    df=df_mf,
                    metric=metric,
                    dict_metrics=dict_metrics["names"],
                    method="average",
                    cluster_metric="euclidean",
                    dict_models=dict_models_labels,
                    row_cluster=False,
                )
                exp.log_image(fig_filename)
        print("Done")

        # Close comet
        exp.end()