victomoe commited on
Commit
b043580
1 Parent(s): db1c16a

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: I'd like to go up one floor
12
+ - text: I’d like to go to floor 2.
13
+ - text: Which office is Yngvar located in?
14
+ - text: Yes, proceed.
15
+ - text: Absolutely.
16
+ pipeline_tag: text-classification
17
+ inference: true
18
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
19
+ ---
20
+
21
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
22
+
23
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
24
+
25
+ The model has been trained using an efficient few-shot learning technique that involves:
26
+
27
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
28
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+ - **Model Type:** SetFit
34
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
35
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
36
+ - **Maximum Sequence Length:** 512 tokens
37
+ - **Number of Classes:** 7 classes
38
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
39
+ <!-- - **Language:** Unknown -->
40
+ <!-- - **License:** Unknown -->
41
+
42
+ ### Model Sources
43
+
44
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
45
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
+
48
+ ### Model Labels
49
+ | Label | Examples |
50
+ |:------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|
51
+ | RequestMoveToFloor | <ul><li>'Please go to the 3rd floor.'</li><li>'Can you take me to floor 5?'</li><li>'I need to go to the 8th floor.'</li></ul> |
52
+ | RequestMoveToFloorByX | <ul><li>'Go one floor up'</li><li>'Take me up two floors'</li><li>'Move me down one level'</li></ul> |
53
+ | Confirm | <ul><li>"Yes, that's right."</li><li>'Sure.'</li><li>'Exactly.'</li></ul> |
54
+ | RequestEmployeeLocation | <ul><li>'Where is Erik Velldal’s office?'</li><li>'Which floor is Andreas Austeng on?'</li><li>'Can you tell me where Birthe Soppe’s office is?'</li></ul> |
55
+ | CurrentFloor | <ul><li>'Which floor are we on?'</li><li>'What floor is this?'</li><li>'Are we on the 5th floor?'</li></ul> |
56
+ | Stop | <ul><li>'Stop the elevator.'</li><li>"Wait, don't go to that floor."</li><li>'No, not that floor.'</li></ul> |
57
+ | OutOfCoverage | <ul><li>"What's the capital of France?"</li><li>'How many floors does this building have?'</li><li>'Can you make a phone call for me?'</li></ul> |
58
+
59
+ ## Uses
60
+
61
+ ### Direct Use for Inference
62
+
63
+ First install the SetFit library:
64
+
65
+ ```bash
66
+ pip install setfit
67
+ ```
68
+
69
+ Then you can load this model and run inference.
70
+
71
+ ```python
72
+ from setfit import SetFitModel
73
+
74
+ # Download from the 🤗 Hub
75
+ model = SetFitModel.from_pretrained("victomoe/setfit-intent-classifier-2")
76
+ # Run inference
77
+ preds = model("Absolutely.")
78
+ ```
79
+
80
+ <!--
81
+ ### Downstream Use
82
+
83
+ *List how someone could finetune this model on their own dataset.*
84
+ -->
85
+
86
+ <!--
87
+ ### Out-of-Scope Use
88
+
89
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
90
+ -->
91
+
92
+ <!--
93
+ ## Bias, Risks and Limitations
94
+
95
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
96
+ -->
97
+
98
+ <!--
99
+ ### Recommendations
100
+
101
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
102
+ -->
103
+
104
+ ## Training Details
105
+
106
+ ### Training Set Metrics
107
+ | Training set | Min | Median | Max |
108
+ |:-------------|:----|:-------|:----|
109
+ | Word count | 1 | 5.1533 | 9 |
110
+
111
+ | Label | Training Sample Count |
112
+ |:------------------------|:----------------------|
113
+ | Confirm | 22 |
114
+ | CurrentFloor | 21 |
115
+ | OutOfCoverage | 22 |
116
+ | RequestEmployeeLocation | 22 |
117
+ | RequestMoveToFloor | 23 |
118
+ | RequestMoveToFloorByX | 20 |
119
+ | Stop | 20 |
120
+
121
+ ### Training Hyperparameters
122
+ - batch_size: (32, 32)
123
+ - num_epochs: (10, 10)
124
+ - max_steps: -1
125
+ - sampling_strategy: oversampling
126
+ - body_learning_rate: (2e-05, 1e-05)
127
+ - head_learning_rate: 0.01
128
+ - loss: CosineSimilarityLoss
129
+ - distance_metric: cosine_distance
130
+ - margin: 0.25
131
+ - end_to_end: False
132
+ - use_amp: False
133
+ - warmup_proportion: 0.1
134
+ - l2_weight: 0.01
135
+ - seed: 42
136
+ - eval_max_steps: -1
137
+ - load_best_model_at_end: False
138
+
139
+ ### Training Results
140
+ | Epoch | Step | Training Loss | Validation Loss |
141
+ |:------:|:----:|:-------------:|:---------------:|
142
+ | 0.0017 | 1 | 0.1415 | - |
143
+ | 0.0829 | 50 | 0.1863 | - |
144
+ | 0.1658 | 100 | 0.1559 | - |
145
+ | 0.2488 | 150 | 0.0966 | - |
146
+ | 0.3317 | 200 | 0.0363 | - |
147
+ | 0.4146 | 250 | 0.009 | - |
148
+ | 0.4975 | 300 | 0.0035 | - |
149
+ | 0.5804 | 350 | 0.0024 | - |
150
+ | 0.6633 | 400 | 0.0017 | - |
151
+ | 0.7463 | 450 | 0.0015 | - |
152
+ | 0.8292 | 500 | 0.0011 | - |
153
+ | 0.9121 | 550 | 0.0009 | - |
154
+ | 0.9950 | 600 | 0.0008 | - |
155
+ | 1.0779 | 650 | 0.0007 | - |
156
+ | 1.1609 | 700 | 0.0006 | - |
157
+ | 1.2438 | 750 | 0.0005 | - |
158
+ | 1.3267 | 800 | 0.0005 | - |
159
+ | 1.4096 | 850 | 0.0005 | - |
160
+ | 1.4925 | 900 | 0.0007 | - |
161
+ | 1.5755 | 950 | 0.0004 | - |
162
+ | 1.6584 | 1000 | 0.0004 | - |
163
+ | 1.7413 | 1050 | 0.0004 | - |
164
+ | 1.8242 | 1100 | 0.0004 | - |
165
+ | 1.9071 | 1150 | 0.0003 | - |
166
+ | 1.9900 | 1200 | 0.0003 | - |
167
+ | 2.0730 | 1250 | 0.0003 | - |
168
+ | 2.1559 | 1300 | 0.0003 | - |
169
+ | 2.2388 | 1350 | 0.0003 | - |
170
+ | 2.3217 | 1400 | 0.0003 | - |
171
+ | 2.4046 | 1450 | 0.0003 | - |
172
+ | 2.4876 | 1500 | 0.0003 | - |
173
+ | 2.5705 | 1550 | 0.0002 | - |
174
+ | 2.6534 | 1600 | 0.0002 | - |
175
+ | 2.7363 | 1650 | 0.0004 | - |
176
+ | 2.8192 | 1700 | 0.0002 | - |
177
+ | 2.9022 | 1750 | 0.0002 | - |
178
+ | 2.9851 | 1800 | 0.0002 | - |
179
+ | 3.0680 | 1850 | 0.0002 | - |
180
+ | 3.1509 | 1900 | 0.0002 | - |
181
+ | 3.2338 | 1950 | 0.0002 | - |
182
+ | 3.3167 | 2000 | 0.0002 | - |
183
+ | 3.3997 | 2050 | 0.0002 | - |
184
+ | 3.4826 | 2100 | 0.0002 | - |
185
+ | 3.5655 | 2150 | 0.0002 | - |
186
+ | 3.6484 | 2200 | 0.0002 | - |
187
+ | 3.7313 | 2250 | 0.0002 | - |
188
+ | 3.8143 | 2300 | 0.0002 | - |
189
+ | 3.8972 | 2350 | 0.0002 | - |
190
+ | 3.9801 | 2400 | 0.0002 | - |
191
+ | 4.0630 | 2450 | 0.0002 | - |
192
+ | 4.1459 | 2500 | 0.0002 | - |
193
+ | 4.2289 | 2550 | 0.0002 | - |
194
+ | 4.3118 | 2600 | 0.0002 | - |
195
+ | 4.3947 | 2650 | 0.0002 | - |
196
+ | 4.4776 | 2700 | 0.0002 | - |
197
+ | 4.5605 | 2750 | 0.0002 | - |
198
+ | 4.6434 | 2800 | 0.0001 | - |
199
+ | 4.7264 | 2850 | 0.0001 | - |
200
+ | 4.8093 | 2900 | 0.0001 | - |
201
+ | 4.8922 | 2950 | 0.0001 | - |
202
+ | 4.9751 | 3000 | 0.0001 | - |
203
+ | 5.0580 | 3050 | 0.0001 | - |
204
+ | 5.1410 | 3100 | 0.0001 | - |
205
+ | 5.2239 | 3150 | 0.0001 | - |
206
+ | 5.3068 | 3200 | 0.0001 | - |
207
+ | 5.3897 | 3250 | 0.0001 | - |
208
+ | 5.4726 | 3300 | 0.0001 | - |
209
+ | 5.5556 | 3350 | 0.0003 | - |
210
+ | 5.6385 | 3400 | 0.0004 | - |
211
+ | 5.7214 | 3450 | 0.0001 | - |
212
+ | 5.8043 | 3500 | 0.0001 | - |
213
+ | 5.8872 | 3550 | 0.0001 | - |
214
+ | 5.9701 | 3600 | 0.0001 | - |
215
+ | 6.0531 | 3650 | 0.0001 | - |
216
+ | 6.1360 | 3700 | 0.0001 | - |
217
+ | 6.2189 | 3750 | 0.0001 | - |
218
+ | 6.3018 | 3800 | 0.0001 | - |
219
+ | 6.3847 | 3850 | 0.0001 | - |
220
+ | 6.4677 | 3900 | 0.0001 | - |
221
+ | 6.5506 | 3950 | 0.0001 | - |
222
+ | 6.6335 | 4000 | 0.0001 | - |
223
+ | 6.7164 | 4050 | 0.0001 | - |
224
+ | 6.7993 | 4100 | 0.0001 | - |
225
+ | 6.8823 | 4150 | 0.0001 | - |
226
+ | 6.9652 | 4200 | 0.0001 | - |
227
+ | 7.0481 | 4250 | 0.0001 | - |
228
+ | 7.1310 | 4300 | 0.0001 | - |
229
+ | 7.2139 | 4350 | 0.0001 | - |
230
+ | 7.2968 | 4400 | 0.0001 | - |
231
+ | 7.3798 | 4450 | 0.0001 | - |
232
+ | 7.4627 | 4500 | 0.0001 | - |
233
+ | 7.5456 | 4550 | 0.0001 | - |
234
+ | 7.6285 | 4600 | 0.0001 | - |
235
+ | 7.7114 | 4650 | 0.0001 | - |
236
+ | 7.7944 | 4700 | 0.0001 | - |
237
+ | 7.8773 | 4750 | 0.0001 | - |
238
+ | 7.9602 | 4800 | 0.0001 | - |
239
+ | 8.0431 | 4850 | 0.0001 | - |
240
+ | 8.1260 | 4900 | 0.0001 | - |
241
+ | 8.2090 | 4950 | 0.0001 | - |
242
+ | 8.2919 | 5000 | 0.0001 | - |
243
+ | 8.3748 | 5050 | 0.0001 | - |
244
+ | 8.4577 | 5100 | 0.0001 | - |
245
+ | 8.5406 | 5150 | 0.0001 | - |
246
+ | 8.6235 | 5200 | 0.0001 | - |
247
+ | 8.7065 | 5250 | 0.0001 | - |
248
+ | 8.7894 | 5300 | 0.0001 | - |
249
+ | 8.8723 | 5350 | 0.0001 | - |
250
+ | 8.9552 | 5400 | 0.0001 | - |
251
+ | 9.0381 | 5450 | 0.0001 | - |
252
+ | 9.1211 | 5500 | 0.0001 | - |
253
+ | 9.2040 | 5550 | 0.0001 | - |
254
+ | 9.2869 | 5600 | 0.0001 | - |
255
+ | 9.3698 | 5650 | 0.0001 | - |
256
+ | 9.4527 | 5700 | 0.0001 | - |
257
+ | 9.5357 | 5750 | 0.0001 | - |
258
+ | 9.6186 | 5800 | 0.0001 | - |
259
+ | 9.7015 | 5850 | 0.0001 | - |
260
+ | 9.7844 | 5900 | 0.0001 | - |
261
+ | 9.8673 | 5950 | 0.0001 | - |
262
+ | 9.9502 | 6000 | 0.0001 | - |
263
+
264
+ ### Framework Versions
265
+ - Python: 3.10.8
266
+ - SetFit: 1.1.0
267
+ - Sentence Transformers: 3.1.1
268
+ - Transformers: 4.38.2
269
+ - PyTorch: 2.1.2
270
+ - Datasets: 2.17.1
271
+ - Tokenizers: 0.15.0
272
+
273
+ ## Citation
274
+
275
+ ### BibTeX
276
+ ```bibtex
277
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
278
+ doi = {10.48550/ARXIV.2209.11055},
279
+ url = {https://arxiv.org/abs/2209.11055},
280
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
281
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
282
+ title = {Efficient Few-Shot Learning Without Prompts},
283
+ publisher = {arXiv},
284
+ year = {2022},
285
+ copyright = {Creative Commons Attribution 4.0 International}
286
+ }
287
+ ```
288
+
289
+ <!--
290
+ ## Glossary
291
+
292
+ *Clearly define terms in order to be accessible across audiences.*
293
+ -->
294
+
295
+ <!--
296
+ ## Model Card Authors
297
+
298
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
299
+ -->
300
+
301
+ <!--
302
+ ## Model Card Contact
303
+
304
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
305
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.38.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.38.2",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "Confirm",
5
+ "CurrentFloor",
6
+ "OutOfCoverage",
7
+ "RequestEmployeeLocation",
8
+ "RequestMoveToFloor",
9
+ "RequestMoveToFloorByX",
10
+ "Stop"
11
+ ]
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb37a1154d10e2716e178d5d8db8bbd05ff3504f1e52ded24fd4913d7e45c8c0
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c2b6dca529b3e82bc54226fc8a6dbb18999b7eb1ab84bd9c98e7a73e059020f
3
+ size 44527
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff