--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: Can you set an alarm? - text: Bring me one floor higher - text: I’d like to go to floor 2. - text: Okay, go ahead. - text: I’d like to go down two floors pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 8 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------| | RequestMoveToFloor | | | RequestMoveUp | | | RequestMoveDown | | | Confirm | | | RequestEmployeeLocation | | | CurrentFloor | | | Stop | | | OutOfCoverage | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("victomoe/setfit-intent-classifier-3") # Run inference preds = model("Okay, go ahead.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 1 | 5.2118 | 9 | | Label | Training Sample Count | |:------------------------|:----------------------| | Confirm | 22 | | CurrentFloor | 21 | | OutOfCoverage | 22 | | RequestEmployeeLocation | 22 | | RequestMoveDown | 20 | | RequestMoveToFloor | 23 | | RequestMoveUp | 20 | | Stop | 20 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0013 | 1 | 0.195 | - | | 0.0633 | 50 | 0.1877 | - | | 0.1266 | 100 | 0.1592 | - | | 0.1899 | 150 | 0.1141 | - | | 0.2532 | 200 | 0.0603 | - | | 0.3165 | 250 | 0.0283 | - | | 0.3797 | 300 | 0.0104 | - | | 0.4430 | 350 | 0.0043 | - | | 0.5063 | 400 | 0.0027 | - | | 0.5696 | 450 | 0.0021 | - | | 0.6329 | 500 | 0.0017 | - | | 0.6962 | 550 | 0.0015 | - | | 0.7595 | 600 | 0.0011 | - | | 0.8228 | 650 | 0.001 | - | | 0.8861 | 700 | 0.0011 | - | | 0.9494 | 750 | 0.0008 | - | | 1.0127 | 800 | 0.0007 | - | | 1.0759 | 850 | 0.0006 | - | | 1.1392 | 900 | 0.0006 | - | | 1.2025 | 950 | 0.0005 | - | | 1.2658 | 1000 | 0.0005 | - | | 1.3291 | 1050 | 0.0005 | - | | 1.3924 | 1100 | 0.0004 | - | | 1.4557 | 1150 | 0.0004 | - | | 1.5190 | 1200 | 0.0004 | - | | 1.5823 | 1250 | 0.0004 | - | | 1.6456 | 1300 | 0.0004 | - | | 1.7089 | 1350 | 0.0003 | - | | 1.7722 | 1400 | 0.0003 | - | | 1.8354 | 1450 | 0.0003 | - | | 1.8987 | 1500 | 0.0003 | - | | 1.9620 | 1550 | 0.0003 | - | | 2.0253 | 1600 | 0.0003 | - | | 2.0886 | 1650 | 0.0003 | - | | 2.1519 | 1700 | 0.0003 | - | | 2.2152 | 1750 | 0.0003 | - | | 2.2785 | 1800 | 0.0003 | - | | 2.3418 | 1850 | 0.0002 | - | | 2.4051 | 1900 | 0.0002 | - | | 2.4684 | 1950 | 0.0002 | - | | 2.5316 | 2000 | 0.0002 | - | | 2.5949 | 2050 | 0.0002 | - | | 2.6582 | 2100 | 0.0002 | - | | 2.7215 | 2150 | 0.0002 | - | | 2.7848 | 2200 | 0.0002 | - | | 2.8481 | 2250 | 0.0002 | - | | 2.9114 | 2300 | 0.0002 | - | | 2.9747 | 2350 | 0.0002 | - | | 3.0380 | 2400 | 0.0002 | - | | 3.1013 | 2450 | 0.0009 | - | | 3.1646 | 2500 | 0.0003 | - | | 3.2278 | 2550 | 0.0002 | - | | 3.2911 | 2600 | 0.0002 | - | | 3.3544 | 2650 | 0.0002 | - | | 3.4177 | 2700 | 0.0002 | - | | 3.4810 | 2750 | 0.0002 | - | | 3.5443 | 2800 | 0.0002 | - | | 3.6076 | 2850 | 0.0002 | - | | 3.6709 | 2900 | 0.0002 | - | | 3.7342 | 2950 | 0.0002 | - | | 3.7975 | 3000 | 0.0002 | - | | 3.8608 | 3050 | 0.0002 | - | | 3.9241 | 3100 | 0.0001 | - | | 3.9873 | 3150 | 0.0002 | - | | 4.0506 | 3200 | 0.0001 | - | | 4.1139 | 3250 | 0.0001 | - | | 4.1772 | 3300 | 0.0001 | - | | 4.2405 | 3350 | 0.0001 | - | | 4.3038 | 3400 | 0.0001 | - | | 4.3671 | 3450 | 0.0001 | - | | 4.4304 | 3500 | 0.0005 | - | | 4.4937 | 3550 | 0.0001 | - | | 4.5570 | 3600 | 0.0001 | - | | 4.6203 | 3650 | 0.0001 | - | | 4.6835 | 3700 | 0.0001 | - | | 4.7468 | 3750 | 0.0001 | - | | 4.8101 | 3800 | 0.0001 | - | | 4.8734 | 3850 | 0.0001 | - | | 4.9367 | 3900 | 0.0001 | - | | 5.0 | 3950 | 0.0001 | - | | 5.0633 | 4000 | 0.0001 | - | | 5.1266 | 4050 | 0.0001 | - | | 5.1899 | 4100 | 0.0001 | - | | 5.2532 | 4150 | 0.0001 | - | | 5.3165 | 4200 | 0.0001 | - | | 5.3797 | 4250 | 0.0001 | - | | 5.4430 | 4300 | 0.0001 | - | | 5.5063 | 4350 | 0.0001 | - | | 5.5696 | 4400 | 0.0001 | - | | 5.6329 | 4450 | 0.0001 | - | | 5.6962 | 4500 | 0.0001 | - | | 5.7595 | 4550 | 0.0001 | - | | 5.8228 | 4600 | 0.0001 | - | | 5.8861 | 4650 | 0.0001 | - | | 5.9494 | 4700 | 0.0001 | - | | 6.0127 | 4750 | 0.0001 | - | | 6.0759 | 4800 | 0.0001 | - | | 6.1392 | 4850 | 0.0001 | - | | 6.2025 | 4900 | 0.0001 | - | | 6.2658 | 4950 | 0.0001 | - | | 6.3291 | 5000 | 0.0001 | - | | 6.3924 | 5050 | 0.0001 | - | | 6.4557 | 5100 | 0.0001 | - | | 6.5190 | 5150 | 0.0001 | - | | 6.5823 | 5200 | 0.0001 | - | | 6.6456 | 5250 | 0.0001 | - | | 6.7089 | 5300 | 0.0001 | - | | 6.7722 | 5350 | 0.0001 | - | | 6.8354 | 5400 | 0.0001 | - | | 6.8987 | 5450 | 0.0001 | - | | 6.9620 | 5500 | 0.0001 | - | | 7.0253 | 5550 | 0.0001 | - | | 7.0886 | 5600 | 0.0001 | - | | 7.1519 | 5650 | 0.0001 | - | | 7.2152 | 5700 | 0.0001 | - | | 7.2785 | 5750 | 0.0001 | - | | 7.3418 | 5800 | 0.0001 | - | | 7.4051 | 5850 | 0.0001 | - | | 7.4684 | 5900 | 0.0001 | - | | 7.5316 | 5950 | 0.0001 | - | | 7.5949 | 6000 | 0.0001 | - | | 7.6582 | 6050 | 0.0001 | - | | 7.7215 | 6100 | 0.0001 | - | | 7.7848 | 6150 | 0.0001 | - | | 7.8481 | 6200 | 0.0001 | - | | 7.9114 | 6250 | 0.0001 | - | | 7.9747 | 6300 | 0.0001 | - | | 8.0380 | 6350 | 0.0001 | - | | 8.1013 | 6400 | 0.0001 | - | | 8.1646 | 6450 | 0.0001 | - | | 8.2278 | 6500 | 0.0001 | - | | 8.2911 | 6550 | 0.0001 | - | | 8.3544 | 6600 | 0.0001 | - | | 8.4177 | 6650 | 0.0001 | - | | 8.4810 | 6700 | 0.0001 | - | | 8.5443 | 6750 | 0.0001 | - | | 8.6076 | 6800 | 0.0001 | - | | 8.6709 | 6850 | 0.0001 | - | | 8.7342 | 6900 | 0.0001 | - | | 8.7975 | 6950 | 0.0001 | - | | 8.8608 | 7000 | 0.0001 | - | | 8.9241 | 7050 | 0.0001 | - | | 8.9873 | 7100 | 0.0001 | - | | 9.0506 | 7150 | 0.0001 | - | | 9.1139 | 7200 | 0.0001 | - | | 9.1772 | 7250 | 0.0001 | - | | 9.2405 | 7300 | 0.0001 | - | | 9.3038 | 7350 | 0.0001 | - | | 9.3671 | 7400 | 0.0001 | - | | 9.4304 | 7450 | 0.0001 | - | | 9.4937 | 7500 | 0.0001 | - | | 9.5570 | 7550 | 0.0001 | - | | 9.6203 | 7600 | 0.0001 | - | | 9.6835 | 7650 | 0.0001 | - | | 9.7468 | 7700 | 0.0001 | - | | 9.8101 | 7750 | 0.0001 | - | | 9.8734 | 7800 | 0.0001 | - | | 9.9367 | 7850 | 0.0001 | - | | 10.0 | 7900 | 0.0001 | - | ### Framework Versions - Python: 3.10.8 - SetFit: 1.1.0 - Sentence Transformers: 3.1.1 - Transformers: 4.38.2 - PyTorch: 2.1.2 - Datasets: 2.17.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```