--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-v3-small-fine-Disaster-Tweets-Part2 results: [] --- # deberta-v3-small-fine-Disaster-Tweets-Part2 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4849 - Accuracy: 0.8275 - F1: 0.8278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 203 | 0.4670 | 0.8511 | 0.8503 | | No log | 2.0 | 406 | 0.4381 | 0.8459 | 0.8455 | | 0.4016 | 3.0 | 609 | 0.4096 | 0.8424 | 0.8413 | | 0.4016 | 4.0 | 812 | 0.4849 | 0.8275 | 0.8278 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1