import paddle import argparse import cv2 import numpy as np import os from models.model import FaceSwap, l2_norm from models.arcface import IRBlock, ResNet from utils.align_face import back_matrix, dealign, align_img from utils.util import paddle2cv, cv2paddle from utils.prepare_data import LandmarkModel def get_id_emb(id_net, id_img_path): id_img = cv2.imread(id_img_path) id_img = cv2.resize(id_img, (112, 112)) id_img = cv2paddle(id_img) mean = paddle.to_tensor([[0.485, 0.456, 0.406]]).reshape((1, 3, 1, 1)) std = paddle.to_tensor([[0.229, 0.224, 0.225]]).reshape((1, 3, 1, 1)) id_img = (id_img - mean) / std id_emb, id_feature = id_net(id_img) id_emb = l2_norm(id_emb) return id_emb, id_feature def get_id_emb_from_image(id_net, id_img): id_img = cv2.resize(id_img, (112, 112)) id_img = cv2paddle(id_img) mean = paddle.to_tensor([[0.485, 0.456, 0.406]]).reshape((1, 3, 1, 1)) std = paddle.to_tensor([[0.229, 0.224, 0.225]]).reshape((1, 3, 1, 1)) id_img = (id_img - mean) / std id_emb, id_feature = id_net(id_img) id_emb = l2_norm(id_emb) return id_emb, id_feature def image_test_multi_face(args, source_aligned_images, target_aligned_images): #paddle.set_device("gpu" if args.use_gpu else 'cpu') paddle.set_device("gpu" if args.use_gpu else 'cpu') faceswap_model = FaceSwap(args.use_gpu) id_net = ResNet(block=IRBlock, layers=[3, 4, 23, 3]) id_net.set_dict(paddle.load('./checkpoints/arcface.pdparams')) id_net.eval() weight = paddle.load('./checkpoints/MobileFaceSwap_224.pdparams') #target_path = args.target_img_path.replace('.png', '').replace('.jpg', '').replace('.jpeg', '') start_idx = args.target_img_path.rfind('/') if start_idx > 0: target_name = args.target_img_path[args.target_img_path.rfind('/'):] else: target_name = args.target_img_path origin_att_img = cv2.imread(args.target_img_path) #id_emb, id_feature = get_id_emb(id_net, base_path + '_aligned.png') for idx, target_aligned_image in enumerate(target_aligned_images): id_emb, id_feature = get_id_emb_from_image(id_net, source_aligned_images[idx % len(source_aligned_images)][0]) faceswap_model.set_model_param(id_emb, id_feature, model_weight=weight) faceswap_model.eval() #print(target_aligned_image.shape) att_img = cv2paddle(target_aligned_image[0]) #import time #start = time.perf_counter() res, mask = faceswap_model(att_img) #print('process time :{}', time.perf_counter() - start) res = paddle2cv(res) #dest[landmarks[idx][0]:landmarks[idx][1],:] = back_matrix = target_aligned_images[idx % len(target_aligned_images)][1] mask = np.transpose(mask[0].numpy(), (1, 2, 0)) origin_att_img = dealign(res, origin_att_img, back_matrix, mask) ''' if args.merge_result: back_matrix = np.load(base_path + '_back.npy') mask = np.transpose(mask[0].numpy(), (1, 2, 0)) res = dealign(res, origin_att_img, back_matrix, mask) ''' cv2.imwrite(os.path.join(args.output_dir, os.path.basename(target_name.format(idx))), origin_att_img) def face_align(landmarkModel, image_path, merge_result=False, image_size=224): if os.path.isfile(image_path): img_list = [image_path] else: img_list = [os.path.join(image_path, x) for x in os.listdir(image_path) if x.endswith('png') or x.endswith('jpg') or x.endswith('jpeg')] for path in img_list: img = cv2.imread(path) landmark = landmarkModel.get(img) if landmark is not None: base_path = path.replace('.png', '').replace('.jpg', '').replace('.jpeg', '') aligned_img, back_matrix = align_img(img, landmark, image_size) # np.save(base_path + '.npy', landmark) cv2.imwrite(base_path + '_aligned.png', aligned_img) if merge_result: np.save(base_path + '_back.npy', back_matrix) def faces_align(landmarkModel, image_path, image_size=224): aligned_imgs =[] if os.path.isfile(image_path): img_list = [image_path] else: img_list = [os.path.join(image_path, x) for x in os.listdir(image_path) if x.endswith('png') or x.endswith('jpg') or x.endswith('jpeg')] for path in img_list: img = cv2.imread(path) landmarks = landmarkModel.gets(img) for landmark in landmarks: if landmark is not None: aligned_img, back_matrix = align_img(img, landmark, image_size) aligned_imgs.append([aligned_img, back_matrix]) return aligned_imgs if __name__ == '__main__': parser = argparse.ArgumentParser(description="MobileFaceSwap Test") parser.add_argument('--source_img_path', type=str, help='path to the source image') parser.add_argument('--target_img_path', type=str, help='path to the target images') parser.add_argument('--output_dir', type=str, default='results', help='path to the output dirs') parser.add_argument('--image_size', type=int, default=224,help='size of the test images (224 SimSwap | 256 FaceShifter)') parser.add_argument('--merge_result', type=bool, default=True, help='output with whole image') parser.add_argument('--need_align', type=bool, default=True, help='need to align the image') parser.add_argument('--use_gpu', type=bool, default=False) args = parser.parse_args() if args.need_align: landmarkModel = LandmarkModel(name='landmarks') landmarkModel.prepare(ctx_id= 0, det_thresh=0.6, det_size=(640,640)) source_aligned_images = faces_align(landmarkModel, args.source_img_path) target_aligned_images = faces_align(landmarkModel, args.target_img_path, args.image_size) os.makedirs(args.output_dir, exist_ok=True) image_test_multi_face(args, source_aligned_images, target_aligned_images)