victorjmarin commited on
Commit
0afc039
·
1 Parent(s): 5d79095

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.65 +/- 21.42
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f89864f8670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f89864f8700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f89864f8790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f89864f8820>", "_build": "<function ActorCriticPolicy._build at 0x7f89864f88b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f89864f8940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f89864f89d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f89864f8a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f89864f8af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f89864f8b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f89864f8c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f89864f8ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f89864f3690>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 4405000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673880144845163618, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.11936000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvayJBT5wcUCUhpRSlIwBbJRL8IwBdJRHQMpTc8g6ltV1fZQoaAZoCWgPQwgMk6mCkYFyQJSGlFKUaBVL/GgWR0DKU59v60pmdX2UKGgGaAloD0MIDD7Nyct7ckCUhpRSlGgVTQABaBZHQMpUdwZwXIl1fZQoaAZoCWgPQwg2WaMeoklxQJSGlFKUaBVL8WgWR0DKVJ3aJyhjdX2UKGgGaAloD0MIrkoi++ALcECUhpRSlGgVTS4BaBZHQMpU0h2nsLR1fZQoaAZoCWgPQwj6mA8INH1xQJSGlFKUaBVNGQFoFkdAylUBcN6PbXV9lChoBmgJaA9DCAzLn29LzXBAlIaUUpRoFU0GAWgWR0DKVSwFA3UAdX2UKGgGaAloD0MIGQRWDi17bECUhpRSlGgVTQYBaBZHQMpVWArYoRZ1fZQoaAZoCWgPQwgxsfm4NjFvQJSGlFKUaBVNCAFoFkdAylY8b8WKuXV9lChoBmgJaA9DCGN9A5Obn3JAlIaUUpRoFUv8aBZHQMpWZvYvnKZ1fZQoaAZoCWgPQwjUX6+w4LlxQJSGlFKUaBVNEAFoFkdAylaW3uNPxnV9lChoBmgJaA9DCFr2JLB5/nFAlIaUUpRoFU0HAWgWR0DKVsR4rz5HdX2UKGgGaAloD0MI6e46G3KWbECUhpRSlGgVTRUBaBZHQMpW8Z2yLQ51fZQoaAZoCWgPQwisyVNW09hvQJSGlFKUaBVNMwFoFkdAylcn8aXKKnV9lChoBmgJaA9DCKIIqdvZa29AlIaUUpRoFU05AWgWR0DKV1xSk0rLdX2UKGgGaAloD0MILiC0Hn7CckCUhpRSlGgVTRUBaBZHQMpYQLsrupl1fZQoaAZoCWgPQwgcJhqkYBtzQJSGlFKUaBVNPgFoFkdAylh2YEW69XV9lChoBmgJaA9DCEzHnGfs9W9AlIaUUpRoFU0SAWgWR0DKWKUeS0SidX2UKGgGaAloD0MIYd9OIgIAcUCUhpRSlGgVS/doFkdAyljQCEHt4XV9lChoBmgJaA9DCF73ViRm0XBAlIaUUpRoFUv0aBZHQMpY90rCm/F1fZQoaAZoCWgPQwgmcyzvql9xQJSGlFKUaBVNLQFoFkdAylnhubZvk3V9lChoBmgJaA9DCKq7sguGAHFAlIaUUpRoFU0VAWgWR0DKWhIn0CiidX2UKGgGaAloD0MIy9b6ImEccUCUhpRSlGgVS+NoFkdAylo7taY/mnV9lChoBmgJaA9DCDgxJCfTx3JAlIaUUpRoFU0TAWgWR0DKWx/aQFLWdX2UKGgGaAloD0MIsdzSagjMcUCUhpRSlGgVS+poFkdAyltGJtSAH3V9lChoBmgJaA9DCAwDllzFEWNAlIaUUpRoFU3oA2gWR0DKXAyWw/xEdX2UKGgGaAloD0MIgEdUqG6ebUCUhpRSlGgVTTsBaBZHQMpcQhInSfF1fZQoaAZoCWgPQwh5dY4BGdlxQJSGlFKUaBVNHQFoFkdAyl0kgr6LwXV9lChoBmgJaA9DCLgjnBY86nFAlIaUUpRoFU0CAWgWR0DKXVJCIDYAdX2UKGgGaAloD0MIMqt3uB1lckCUhpRSlGgVS+doFkdAyl15qN6w+3V9lChoBmgJaA9DCDHO34TCY25AlIaUUpRoFU0YAWgWR0DKXalaQmu1dX2UKGgGaAloD0MIhUIEHEIJN0CUhpRSlGgVS5VoFkdAyl3AitaIN3V9lChoBmgJaA9DCHKL+bnh+HFAlIaUUpRoFU0HAWgWR0DKXewYNy5qdX2UKGgGaAloD0MInnk57H7bckCUhpRSlGgVS/poFkdAyl4WO4G2TnV9lChoBmgJaA9DCJJ2o485/XBAlIaUUpRoFU0NAWgWR0DKXkGdPLxJdX2UKGgGaAloD0MIrimQ2VmXcECUhpRSlGgVS+ZoFkdAyl5nsl9jPXV9lChoBmgJaA9DCB5QNuUKx2xAlIaUUpRoFU0IAWgWR0DKX0gmqo60dX2UKGgGaAloD0MIhEiGHFuHS0CUhpRSlGgVS5xoFkdAymAb7Ikqt3V9lChoBmgJaA9DCP3ZjxTRVnBAlIaUUpRoFU0hAWgWR0DKYExh8YygdX2UKGgGaAloD0MISyNm9jlwcUCUhpRSlGgVTTIBaBZHQMpggAOz6ad1fZQoaAZoCWgPQwiyg0pcB6xwQJSGlFKUaBVNGAFoFkdAymCw01qFiHV9lChoBmgJaA9DCHva4a8JonFAlIaUUpRoFUvkaBZHQMpg1c9W6sh1fZQoaAZoCWgPQwg7N23G6QlxQJSGlFKUaBVNAwFoFkdAymECc7yQP3V9lChoBmgJaA9DCMCXwoMm1HBAlIaUUpRoFUv4aBZHQMphK8vM8ox1fZQoaAZoCWgPQwi4Agr1NORwQJSGlFKUaBVNMQFoFkdAymITeJpFkXV9lChoBmgJaA9DCOAO1CmPM25AlIaUUpRoFU0YAWgWR0DKYkCxRl6JdX2UKGgGaAloD0MI2nBYGvjucECUhpRSlGgVS/toFkdAymJt2h7E53V9lChoBmgJaA9DCJTai2j7hHJAlIaUUpRoFU0FAWgWR0DKYphrcj7idX2UKGgGaAloD0MI1Xq/0Q7NcECUhpRSlGgVTWADaBZHQMpjUX4CZF51fZQoaAZoCWgPQwgddt8x/CNwQJSGlFKUaBVNGAFoFkdAymQ1FOO803V9lChoBmgJaA9DCMVx4NVy5XJAlIaUUpRoFUv3aBZHQMpkXltKqXF1fZQoaAZoCWgPQwgiGAeXDtNwQJSGlFKUaBVNBQFoFkdAymSMmjTKDHV9lChoBmgJaA9DCOaQ1ELJVkJAlIaUUpRoFU3oA2gWR0DKZktBfKISdX2UKGgGaAloD0MIuVUQA12JcECUhpRSlGgVTRcBaBZHQMpmfAuZkTZ1fZQoaAZoCWgPQwgctcL0fRNxQJSGlFKUaBVL9WgWR0DKZ1lWZJCjdX2UKGgGaAloD0MIGuHtQYhqckCUhpRSlGgVS/ZoFkdAymeEykbgj3V9lChoBmgJaA9DCJgwmpXtFXBAlIaUUpRoFUv+aBZHQMpnrrcKw6h1fZQoaAZoCWgPQwjJVpdTwqtwQJSGlFKUaBVL/mgWR0DKZ9fikwevdX2UKGgGaAloD0MIuvYF9MJqcUCUhpRSlGgVTR4BaBZHQMpoBmP5pJx1fZQoaAZoCWgPQwiYhuEj4khwQJSGlFKUaBVNHgFoFkdAymg2uFHrhXV9lChoBmgJaA9DCCOfVzw193BAlIaUUpRoFU0EAWgWR0DKaGDrcCYDdX2UKGgGaAloD0MIvsEXJtNLbUCUhpRSlGgVTQwBaBZHQMpoj00WM0h1fZQoaAZoCWgPQwghrTHoRNFxQJSGlFKUaBVL7mgWR0DKaXQxQBPsdX2UKGgGaAloD0MI4zjwanlncUCUhpRSlGgVTS0BaBZHQMppqB7u2JB1fZQoaAZoCWgPQwj5ZTBG5CJyQJSGlFKUaBVNMAFoFkdAymnZWQwK0HV9lChoBmgJaA9DCOKsiJrofXBAlIaUUpRoFU08AWgWR0DKag/w1BMSdX2UKGgGaAloD0MIgVziyAOcbkCUhpRSlGgVTRoBaBZHQMpqP/95yEN1fZQoaAZoCWgPQwh+N92yQ6JwQJSGlFKUaBVNGwFoFkdAympv1WbPQnV9lChoBmgJaA9DCPYJoBiZ+3BAlIaUUpRoFU0BAWgWR0DKapn0RODbdX2UKGgGaAloD0MIcJhokILMb0CUhpRSlGgVS/VoFkdAymwl4TK1X3V9lChoBmgJaA9DCPutnSgJQ2JAlIaUUpRoFU3oA2gWR0DKbRfM+u/2dX2UKGgGaAloD0MI66urAjVScECUhpRSlGgVS/5oFkdAym1Cjk+5fHV9lChoBmgJaA9DCOqXiLcOk3BAlIaUUpRoFU0fAWgWR0DKbXBekYXPdX2UKGgGaAloD0MII4JxcGnPbECUhpRSlGgVTRQBaBZHQMptnoyCWeJ1fZQoaAZoCWgPQwhOC170VeNwQJSGlFKUaBVNHAFoFkdAym6EdwvQGHV9lChoBmgJaA9DCA9j0t9LbnJAlIaUUpRoFUvlaBZHQMpuq3wLE1l1fZQoaAZoCWgPQwgCRwIN9tJwQJSGlFKUaBVNJQFoFkdAym7cI9C/oXV9lChoBmgJaA9DCMU6Vb6nTnBAlIaUUpRoFU0VAWgWR0DKbwrgAIY4dX2UKGgGaAloD0MIliL5SqCdcUCUhpRSlGgVS/poFkdAym82Kl54W3V9lChoBmgJaA9DCMbeiy9ayWxAlIaUUpRoFU0sAWgWR0DKb2me18b8dX2UKGgGaAloD0MI2T9PAwYmbUCUhpRSlGgVTRUBaBZHQMpvmikGiYd1fZQoaAZoCWgPQwjZ6JyfIvtxQJSGlFKUaBVNHgFoFkdAym/KB19v0nV9lChoBmgJaA9DCDdTIR4Jc3FAlIaUUpRoFU0EAWgWR0DKcK0jHGS7dX2UKGgGaAloD0MIAB+8dukfckCUhpRSlGgVTScBaBZHQMpw3Sm65G11fZQoaAZoCWgPQwi4BOCfUnxjQJSGlFKUaBVN6ANoFkdAynJ2f+S8rnV9lChoBmgJaA9DCFEzpIqisXBAlIaUUpRoFU0EAWgWR0DKcqD6UJOWdX2UKGgGaAloD0MILXjRVxBlb0CUhpRSlGgVTQ4BaBZHQMpzhHhjvux1fZQoaAZoCWgPQwigVPt0/FNyQJSGlFKUaBVNNAFoFkdAynO5vVEux3V9lChoBmgJaA9DCKmDvB6MFnFAlIaUUpRoFU1FAWgWR0DKc/W7HyVfdX2UKGgGaAloD0MIwTbiye4gbUCUhpRSlGgVTQgBaBZHQMp0I1MmF8J1fZQoaAZoCWgPQwjn/1VHDpZtQJSGlFKUaBVNDwFoFkdAynRWLn9vTHV9lChoBmgJaA9DCDQTDOcaTXBAlIaUUpRoFU0IAWgWR0DKdISdOIqLdX2UKGgGaAloD0MIlSpR9tZ3cECUhpRSlGgVTSMBaBZHQMp0uEZJkG11fZQoaAZoCWgPQwjpSC7/YTRxQJSGlFKUaBVL8GgWR0DKdN9PWQOndX2UKGgGaAloD0MI/WmjOp0HcECUhpRSlGgVTR8BaBZHQMp1xOvECNl1fZQoaAZoCWgPQwgHeqhtg+1xQJSGlFKUaBVL/WgWR0DKde8AxSHedX2UKGgGaAloD0MI4nK8AtF2ckCUhpRSlGgVS/VoFkdAynYbhH9WIXV9lChoBmgJaA9DCNv4E5UNCXNAlIaUUpRoFU0jAWgWR0DKdk1pGnXNdX2UKGgGaAloD0MIqFZfXRUTcECUhpRSlGgVTSIBaBZHQMp2faBI4ER1fZQoaAZoCWgPQwieswWElhJwQJSGlFKUaBVNJAFoFkdAynavQ/oq1HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 21500, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1d4a82aa99eed3107207aaecf6dade33573922f31ae56b00edbcd357821146e
3
+ size 146563
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f89864f8670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f89864f8700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f89864f8790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f89864f8820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f89864f88b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f89864f8940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f89864f89d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f89864f8a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f89864f8af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f89864f8b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f89864f8c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f89864f8ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f89864f3690>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 4405000,
47
+ "_total_timesteps": 5000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673880144845163618,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": null,
59
+ "_last_episode_starts": {
60
+ ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
62
+ },
63
+ "_last_original_obs": null,
64
+ "_episode_num": 0,
65
+ "use_sde": false,
66
+ "sde_sample_freq": -1,
67
+ "_current_progress_remaining": 0.11936000000000002,
68
+ "ep_info_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvayJBT5wcUCUhpRSlIwBbJRL8IwBdJRHQMpTc8g6ltV1fZQoaAZoCWgPQwgMk6mCkYFyQJSGlFKUaBVL/GgWR0DKU59v60pmdX2UKGgGaAloD0MIDD7Nyct7ckCUhpRSlGgVTQABaBZHQMpUdwZwXIl1fZQoaAZoCWgPQwg2WaMeoklxQJSGlFKUaBVL8WgWR0DKVJ3aJyhjdX2UKGgGaAloD0MIrkoi++ALcECUhpRSlGgVTS4BaBZHQMpU0h2nsLR1fZQoaAZoCWgPQwj6mA8INH1xQJSGlFKUaBVNGQFoFkdAylUBcN6PbXV9lChoBmgJaA9DCAzLn29LzXBAlIaUUpRoFU0GAWgWR0DKVSwFA3UAdX2UKGgGaAloD0MIGQRWDi17bECUhpRSlGgVTQYBaBZHQMpVWArYoRZ1fZQoaAZoCWgPQwgxsfm4NjFvQJSGlFKUaBVNCAFoFkdAylY8b8WKuXV9lChoBmgJaA9DCGN9A5Obn3JAlIaUUpRoFUv8aBZHQMpWZvYvnKZ1fZQoaAZoCWgPQwjUX6+w4LlxQJSGlFKUaBVNEAFoFkdAylaW3uNPxnV9lChoBmgJaA9DCFr2JLB5/nFAlIaUUpRoFU0HAWgWR0DKVsR4rz5HdX2UKGgGaAloD0MI6e46G3KWbECUhpRSlGgVTRUBaBZHQMpW8Z2yLQ51fZQoaAZoCWgPQwisyVNW09hvQJSGlFKUaBVNMwFoFkdAylcn8aXKKnV9lChoBmgJaA9DCKIIqdvZa29AlIaUUpRoFU05AWgWR0DKV1xSk0rLdX2UKGgGaAloD0MILiC0Hn7CckCUhpRSlGgVTRUBaBZHQMpYQLsrupl1fZQoaAZoCWgPQwgcJhqkYBtzQJSGlFKUaBVNPgFoFkdAylh2YEW69XV9lChoBmgJaA9DCEzHnGfs9W9AlIaUUpRoFU0SAWgWR0DKWKUeS0SidX2UKGgGaAloD0MIYd9OIgIAcUCUhpRSlGgVS/doFkdAyljQCEHt4XV9lChoBmgJaA9DCF73ViRm0XBAlIaUUpRoFUv0aBZHQMpY90rCm/F1fZQoaAZoCWgPQwgmcyzvql9xQJSGlFKUaBVNLQFoFkdAylnhubZvk3V9lChoBmgJaA9DCKq7sguGAHFAlIaUUpRoFU0VAWgWR0DKWhIn0CiidX2UKGgGaAloD0MIy9b6ImEccUCUhpRSlGgVS+NoFkdAylo7taY/mnV9lChoBmgJaA9DCDgxJCfTx3JAlIaUUpRoFU0TAWgWR0DKWx/aQFLWdX2UKGgGaAloD0MIsdzSagjMcUCUhpRSlGgVS+poFkdAyltGJtSAH3V9lChoBmgJaA9DCAwDllzFEWNAlIaUUpRoFU3oA2gWR0DKXAyWw/xEdX2UKGgGaAloD0MIgEdUqG6ebUCUhpRSlGgVTTsBaBZHQMpcQhInSfF1fZQoaAZoCWgPQwh5dY4BGdlxQJSGlFKUaBVNHQFoFkdAyl0kgr6LwXV9lChoBmgJaA9DCLgjnBY86nFAlIaUUpRoFU0CAWgWR0DKXVJCIDYAdX2UKGgGaAloD0MIMqt3uB1lckCUhpRSlGgVS+doFkdAyl15qN6w+3V9lChoBmgJaA9DCDHO34TCY25AlIaUUpRoFU0YAWgWR0DKXalaQmu1dX2UKGgGaAloD0MIhUIEHEIJN0CUhpRSlGgVS5VoFkdAyl3AitaIN3V9lChoBmgJaA9DCHKL+bnh+HFAlIaUUpRoFU0HAWgWR0DKXewYNy5qdX2UKGgGaAloD0MInnk57H7bckCUhpRSlGgVS/poFkdAyl4WO4G2TnV9lChoBmgJaA9DCJJ2o485/XBAlIaUUpRoFU0NAWgWR0DKXkGdPLxJdX2UKGgGaAloD0MIrimQ2VmXcECUhpRSlGgVS+ZoFkdAyl5nsl9jPXV9lChoBmgJaA9DCB5QNuUKx2xAlIaUUpRoFU0IAWgWR0DKX0gmqo60dX2UKGgGaAloD0MIhEiGHFuHS0CUhpRSlGgVS5xoFkdAymAb7Ikqt3V9lChoBmgJaA9DCP3ZjxTRVnBAlIaUUpRoFU0hAWgWR0DKYExh8YygdX2UKGgGaAloD0MISyNm9jlwcUCUhpRSlGgVTTIBaBZHQMpggAOz6ad1fZQoaAZoCWgPQwiyg0pcB6xwQJSGlFKUaBVNGAFoFkdAymCw01qFiHV9lChoBmgJaA9DCHva4a8JonFAlIaUUpRoFUvkaBZHQMpg1c9W6sh1fZQoaAZoCWgPQwg7N23G6QlxQJSGlFKUaBVNAwFoFkdAymECc7yQP3V9lChoBmgJaA9DCMCXwoMm1HBAlIaUUpRoFUv4aBZHQMphK8vM8ox1fZQoaAZoCWgPQwi4Agr1NORwQJSGlFKUaBVNMQFoFkdAymITeJpFkXV9lChoBmgJaA9DCOAO1CmPM25AlIaUUpRoFU0YAWgWR0DKYkCxRl6JdX2UKGgGaAloD0MI2nBYGvjucECUhpRSlGgVS/toFkdAymJt2h7E53V9lChoBmgJaA9DCJTai2j7hHJAlIaUUpRoFU0FAWgWR0DKYphrcj7idX2UKGgGaAloD0MI1Xq/0Q7NcECUhpRSlGgVTWADaBZHQMpjUX4CZF51fZQoaAZoCWgPQwgddt8x/CNwQJSGlFKUaBVNGAFoFkdAymQ1FOO803V9lChoBmgJaA9DCMVx4NVy5XJAlIaUUpRoFUv3aBZHQMpkXltKqXF1fZQoaAZoCWgPQwgiGAeXDtNwQJSGlFKUaBVNBQFoFkdAymSMmjTKDHV9lChoBmgJaA9DCOaQ1ELJVkJAlIaUUpRoFU3oA2gWR0DKZktBfKISdX2UKGgGaAloD0MIuVUQA12JcECUhpRSlGgVTRcBaBZHQMpmfAuZkTZ1fZQoaAZoCWgPQwgctcL0fRNxQJSGlFKUaBVL9WgWR0DKZ1lWZJCjdX2UKGgGaAloD0MIGuHtQYhqckCUhpRSlGgVS/ZoFkdAymeEykbgj3V9lChoBmgJaA9DCJgwmpXtFXBAlIaUUpRoFUv+aBZHQMpnrrcKw6h1fZQoaAZoCWgPQwjJVpdTwqtwQJSGlFKUaBVL/mgWR0DKZ9fikwevdX2UKGgGaAloD0MIuvYF9MJqcUCUhpRSlGgVTR4BaBZHQMpoBmP5pJx1fZQoaAZoCWgPQwiYhuEj4khwQJSGlFKUaBVNHgFoFkdAymg2uFHrhXV9lChoBmgJaA9DCCOfVzw193BAlIaUUpRoFU0EAWgWR0DKaGDrcCYDdX2UKGgGaAloD0MIvsEXJtNLbUCUhpRSlGgVTQwBaBZHQMpoj00WM0h1fZQoaAZoCWgPQwghrTHoRNFxQJSGlFKUaBVL7mgWR0DKaXQxQBPsdX2UKGgGaAloD0MI4zjwanlncUCUhpRSlGgVTS0BaBZHQMppqB7u2JB1fZQoaAZoCWgPQwj5ZTBG5CJyQJSGlFKUaBVNMAFoFkdAymnZWQwK0HV9lChoBmgJaA9DCOKsiJrofXBAlIaUUpRoFU08AWgWR0DKag/w1BMSdX2UKGgGaAloD0MIgVziyAOcbkCUhpRSlGgVTRoBaBZHQMpqP/95yEN1fZQoaAZoCWgPQwh+N92yQ6JwQJSGlFKUaBVNGwFoFkdAympv1WbPQnV9lChoBmgJaA9DCPYJoBiZ+3BAlIaUUpRoFU0BAWgWR0DKapn0RODbdX2UKGgGaAloD0MIcJhokILMb0CUhpRSlGgVS/VoFkdAymwl4TK1X3V9lChoBmgJaA9DCPutnSgJQ2JAlIaUUpRoFU3oA2gWR0DKbRfM+u/2dX2UKGgGaAloD0MI66urAjVScECUhpRSlGgVS/5oFkdAym1Cjk+5fHV9lChoBmgJaA9DCOqXiLcOk3BAlIaUUpRoFU0fAWgWR0DKbXBekYXPdX2UKGgGaAloD0MII4JxcGnPbECUhpRSlGgVTRQBaBZHQMptnoyCWeJ1fZQoaAZoCWgPQwhOC170VeNwQJSGlFKUaBVNHAFoFkdAym6EdwvQGHV9lChoBmgJaA9DCA9j0t9LbnJAlIaUUpRoFUvlaBZHQMpuq3wLE1l1fZQoaAZoCWgPQwgCRwIN9tJwQJSGlFKUaBVNJQFoFkdAym7cI9C/oXV9lChoBmgJaA9DCMU6Vb6nTnBAlIaUUpRoFU0VAWgWR0DKbwrgAIY4dX2UKGgGaAloD0MIliL5SqCdcUCUhpRSlGgVS/poFkdAym82Kl54W3V9lChoBmgJaA9DCMbeiy9ayWxAlIaUUpRoFU0sAWgWR0DKb2me18b8dX2UKGgGaAloD0MI2T9PAwYmbUCUhpRSlGgVTRUBaBZHQMpvmikGiYd1fZQoaAZoCWgPQwjZ6JyfIvtxQJSGlFKUaBVNHgFoFkdAym/KB19v0nV9lChoBmgJaA9DCDdTIR4Jc3FAlIaUUpRoFU0EAWgWR0DKcK0jHGS7dX2UKGgGaAloD0MIAB+8dukfckCUhpRSlGgVTScBaBZHQMpw3Sm65G11fZQoaAZoCWgPQwi4BOCfUnxjQJSGlFKUaBVN6ANoFkdAynJ2f+S8rnV9lChoBmgJaA9DCFEzpIqisXBAlIaUUpRoFU0EAWgWR0DKcqD6UJOWdX2UKGgGaAloD0MILXjRVxBlb0CUhpRSlGgVTQ4BaBZHQMpzhHhjvux1fZQoaAZoCWgPQwigVPt0/FNyQJSGlFKUaBVNNAFoFkdAynO5vVEux3V9lChoBmgJaA9DCKmDvB6MFnFAlIaUUpRoFU1FAWgWR0DKc/W7HyVfdX2UKGgGaAloD0MIwTbiye4gbUCUhpRSlGgVTQgBaBZHQMp0I1MmF8J1fZQoaAZoCWgPQwjn/1VHDpZtQJSGlFKUaBVNDwFoFkdAynRWLn9vTHV9lChoBmgJaA9DCDQTDOcaTXBAlIaUUpRoFU0IAWgWR0DKdISdOIqLdX2UKGgGaAloD0MIlSpR9tZ3cECUhpRSlGgVTSMBaBZHQMp0uEZJkG11fZQoaAZoCWgPQwjpSC7/YTRxQJSGlFKUaBVL8GgWR0DKdN9PWQOndX2UKGgGaAloD0MI/WmjOp0HcECUhpRSlGgVTR8BaBZHQMp1xOvECNl1fZQoaAZoCWgPQwgHeqhtg+1xQJSGlFKUaBVL/WgWR0DKde8AxSHedX2UKGgGaAloD0MI4nK8AtF2ckCUhpRSlGgVS/VoFkdAynYbhH9WIXV9lChoBmgJaA9DCNv4E5UNCXNAlIaUUpRoFU0jAWgWR0DKdk1pGnXNdX2UKGgGaAloD0MIqFZfXRUTcECUhpRSlGgVTSIBaBZHQMp2faBI4ER1fZQoaAZoCWgPQwieswWElhJwQJSGlFKUaBVNJAFoFkdAynavQ/oq1HVlLg=="
71
+ },
72
+ "ep_success_buffer": {
73
+ ":type:": "<class 'collections.deque'>",
74
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
75
+ },
76
+ "_n_updates": 21500,
77
+ "n_steps": 2048,
78
+ "gamma": 0.99,
79
+ "gae_lambda": 0.95,
80
+ "ent_coef": 0.0,
81
+ "vf_coef": 0.5,
82
+ "max_grad_norm": 0.5,
83
+ "batch_size": 64,
84
+ "n_epochs": 10,
85
+ "clip_range": {
86
+ ":type:": "<class 'function'>",
87
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
88
+ },
89
+ "clip_range_vf": null,
90
+ "normalize_advantage": true,
91
+ "target_kl": null
92
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31e051d444b65d47dd36a79d082b3e95ae79bd2d9b7213b796e0c48d359af61a
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc9614d16267e50e225feb009084c3be0d14eb2f6a4fcdf22adce596c917dd05
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (200 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.65254929770197, "std_reward": 21.41752968349522, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T18:36:03.770145"}