metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
we get some truly unique character studies and a cross-section of
americana that hollywood could n't possibly fictionalize and be believed .
- text: >-
the movie is one of the best examples of artful large format filmmaking
you are likely to see anytime soon .
- text: my response to the film is best described as lukewarm .
- text: >-
the movie 's ripe , enrapturing beauty will tempt those willing to probe
its inscrutable mysteries .
- text: >-
fear dot com is so rambling and disconnected it never builds any suspense
.
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.5380090497737556
name: Accuracy
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 5 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
2 |
|
3 |
|
1 |
|
4 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.5380 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("vidhi0206/setfit-paraphrase-mpnet-sst5_v2")
# Run inference
preds = model("my response to the film is best described as lukewarm .")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 18.8062 | 52 |
Label | Training Sample Count |
---|---|
0 | 64 |
1 | 64 |
2 | 64 |
3 | 64 |
4 | 64 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0006 | 1 | 0.2259 | - |
0.0312 | 50 | 0.2373 | - |
0.0625 | 100 | 0.1726 | - |
0.0938 | 150 | 0.1607 | - |
0.125 | 200 | 0.1869 | - |
0.1562 | 250 | 0.1863 | - |
0.1875 | 300 | 0.224 | - |
0.2188 | 350 | 0.1625 | - |
0.25 | 400 | 0.1284 | - |
0.2812 | 450 | 0.1357 | - |
0.3125 | 500 | 0.2193 | - |
0.3438 | 550 | 0.1434 | - |
0.375 | 600 | 0.0524 | - |
0.4062 | 650 | 0.0558 | - |
0.4375 | 700 | 0.072 | - |
0.4688 | 750 | 0.0312 | - |
0.5 | 800 | 0.0732 | - |
0.5312 | 850 | 0.0117 | - |
0.5625 | 900 | 0.0311 | - |
0.5938 | 950 | 0.0228 | - |
0.625 | 1000 | 0.0026 | - |
0.6562 | 1050 | 0.0196 | - |
0.6875 | 1100 | 0.0017 | - |
0.7188 | 1150 | 0.0067 | - |
0.75 | 1200 | 0.0029 | - |
0.7812 | 1250 | 0.0041 | - |
0.8125 | 1300 | 0.0006 | - |
0.8438 | 1350 | 0.0022 | - |
0.875 | 1400 | 0.0006 | - |
0.9062 | 1450 | 0.0007 | - |
0.9375 | 1500 | 0.001 | - |
0.9688 | 1550 | 0.0009 | - |
1.0 | 1600 | 0.0013 | - |
Framework Versions
- Python: 3.8.10
- SetFit: 1.0.3
- Sentence Transformers: 2.3.1
- Transformers: 4.37.2
- PyTorch: 2.2.0+cu121
- Datasets: 2.17.0
- Tokenizers: 0.15.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}