vidhi0206 commited on
Commit
8f105a9
1 Parent(s): f442f64

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false
9
+ }
README.md ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: we get some truly unique character studies and a cross-section of americana
12
+ that hollywood could n't possibly fictionalize and be believed .
13
+ - text: the movie is one of the best examples of artful large format filmmaking you
14
+ are likely to see anytime soon .
15
+ - text: my response to the film is best described as lukewarm .
16
+ - text: the movie 's ripe , enrapturing beauty will tempt those willing to probe its
17
+ inscrutable mysteries .
18
+ - text: fear dot com is so rambling and disconnected it never builds any suspense
19
+ .
20
+ pipeline_tag: text-classification
21
+ inference: true
22
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
23
+ model-index:
24
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
25
+ results:
26
+ - task:
27
+ type: text-classification
28
+ name: Text Classification
29
+ dataset:
30
+ name: Unknown
31
+ type: unknown
32
+ split: test
33
+ metrics:
34
+ - type: accuracy
35
+ value: 0.5380090497737556
36
+ name: Accuracy
37
+ ---
38
+
39
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Number of Classes:** 5 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | 0 | <ul><li>"it 's not a motion picture ; it 's an utterly static picture ."</li><li>"frankly , it 's kind of insulting , both to men and women ."</li><li>'under-rehearsed and lifeless'</li></ul> |
70
+ | 2 | <ul><li>"recoing 's fantastic performance does n't exactly reveal what makes vincent tick , but perhaps any definitive explanation for it would have felt like a cheat ."</li><li>"do n't expect any subtlety from this latest entry in the increasingly threadbare gross-out comedy cycle ."</li><li>"merry friggin ' christmas !"</li></ul> |
71
+ | 3 | <ul><li>"so purely enjoyable that you might not even notice it 's a fairly straightforward remake of hollywood comedies such as father of the bride ."</li><li>"what saves this deeply affecting film from being merely a collection of wrenching cases is corcuera 's attention to detail ."</li><li>'for once , a movie does not proclaim the truth about two love-struck somebodies , but permits them time and space to convince us of that all on their own .'</li></ul> |
72
+ | 1 | <ul><li>"the fact that it is n't very good is almost beside the point ."</li><li>'what starts off as a satisfying kids flck becomes increasingly implausible as it races through contrived plot points .'</li><li>'the film is ultimately about as inspiring as a hallmark card .'</li></ul> |
73
+ | 4 | <ul><li>'cool gadgets and creatures keep this fresh .'</li><li>'morton deserves an oscar nomination .'</li><li>'a brutal and funny work .'</li></ul> |
74
+
75
+ ## Evaluation
76
+
77
+ ### Metrics
78
+ | Label | Accuracy |
79
+ |:--------|:---------|
80
+ | **all** | 0.5380 |
81
+
82
+ ## Uses
83
+
84
+ ### Direct Use for Inference
85
+
86
+ First install the SetFit library:
87
+
88
+ ```bash
89
+ pip install setfit
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+
94
+ ```python
95
+ from setfit import SetFitModel
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SetFitModel.from_pretrained("vidhi0206/setfit-paraphrase-mpnet-sst5_v2")
99
+ # Run inference
100
+ preds = model("my response to the film is best described as lukewarm .")
101
+ ```
102
+
103
+ <!--
104
+ ### Downstream Use
105
+
106
+ *List how someone could finetune this model on their own dataset.*
107
+ -->
108
+
109
+ <!--
110
+ ### Out-of-Scope Use
111
+
112
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
113
+ -->
114
+
115
+ <!--
116
+ ## Bias, Risks and Limitations
117
+
118
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
119
+ -->
120
+
121
+ <!--
122
+ ### Recommendations
123
+
124
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
125
+ -->
126
+
127
+ ## Training Details
128
+
129
+ ### Training Set Metrics
130
+ | Training set | Min | Median | Max |
131
+ |:-------------|:----|:--------|:----|
132
+ | Word count | 2 | 18.8062 | 52 |
133
+
134
+ | Label | Training Sample Count |
135
+ |:------|:----------------------|
136
+ | 0 | 64 |
137
+ | 1 | 64 |
138
+ | 2 | 64 |
139
+ | 3 | 64 |
140
+ | 4 | 64 |
141
+
142
+ ### Training Hyperparameters
143
+ - batch_size: (8, 8)
144
+ - num_epochs: (1, 1)
145
+ - max_steps: -1
146
+ - sampling_strategy: oversampling
147
+ - num_iterations: 20
148
+ - body_learning_rate: (2e-05, 2e-05)
149
+ - head_learning_rate: 2e-05
150
+ - loss: CosineSimilarityLoss
151
+ - distance_metric: cosine_distance
152
+ - margin: 0.25
153
+ - end_to_end: False
154
+ - use_amp: False
155
+ - warmup_proportion: 0.1
156
+ - seed: 42
157
+ - eval_max_steps: -1
158
+ - load_best_model_at_end: False
159
+
160
+ ### Training Results
161
+ | Epoch | Step | Training Loss | Validation Loss |
162
+ |:------:|:----:|:-------------:|:---------------:|
163
+ | 0.0006 | 1 | 0.2259 | - |
164
+ | 0.0312 | 50 | 0.2373 | - |
165
+ | 0.0625 | 100 | 0.1726 | - |
166
+ | 0.0938 | 150 | 0.1607 | - |
167
+ | 0.125 | 200 | 0.1869 | - |
168
+ | 0.1562 | 250 | 0.1863 | - |
169
+ | 0.1875 | 300 | 0.224 | - |
170
+ | 0.2188 | 350 | 0.1625 | - |
171
+ | 0.25 | 400 | 0.1284 | - |
172
+ | 0.2812 | 450 | 0.1357 | - |
173
+ | 0.3125 | 500 | 0.2193 | - |
174
+ | 0.3438 | 550 | 0.1434 | - |
175
+ | 0.375 | 600 | 0.0524 | - |
176
+ | 0.4062 | 650 | 0.0558 | - |
177
+ | 0.4375 | 700 | 0.072 | - |
178
+ | 0.4688 | 750 | 0.0312 | - |
179
+ | 0.5 | 800 | 0.0732 | - |
180
+ | 0.5312 | 850 | 0.0117 | - |
181
+ | 0.5625 | 900 | 0.0311 | - |
182
+ | 0.5938 | 950 | 0.0228 | - |
183
+ | 0.625 | 1000 | 0.0026 | - |
184
+ | 0.6562 | 1050 | 0.0196 | - |
185
+ | 0.6875 | 1100 | 0.0017 | - |
186
+ | 0.7188 | 1150 | 0.0067 | - |
187
+ | 0.75 | 1200 | 0.0029 | - |
188
+ | 0.7812 | 1250 | 0.0041 | - |
189
+ | 0.8125 | 1300 | 0.0006 | - |
190
+ | 0.8438 | 1350 | 0.0022 | - |
191
+ | 0.875 | 1400 | 0.0006 | - |
192
+ | 0.9062 | 1450 | 0.0007 | - |
193
+ | 0.9375 | 1500 | 0.001 | - |
194
+ | 0.9688 | 1550 | 0.0009 | - |
195
+ | 1.0 | 1600 | 0.0013 | - |
196
+
197
+ ### Framework Versions
198
+ - Python: 3.8.10
199
+ - SetFit: 1.0.3
200
+ - Sentence Transformers: 2.3.1
201
+ - Transformers: 4.37.2
202
+ - PyTorch: 2.2.0+cu121
203
+ - Datasets: 2.17.0
204
+ - Tokenizers: 0.15.1
205
+
206
+ ## Citation
207
+
208
+ ### BibTeX
209
+ ```bibtex
210
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
211
+ doi = {10.48550/ARXIV.2209.11055},
212
+ url = {https://arxiv.org/abs/2209.11055},
213
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
214
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
215
+ title = {Efficient Few-Shot Learning Without Prompts},
216
+ publisher = {arXiv},
217
+ year = {2022},
218
+ copyright = {Creative Commons Attribution 4.0 International}
219
+ }
220
+ ```
221
+
222
+ <!--
223
+ ## Glossary
224
+
225
+ *Clearly define terms in order to be accessible across audiences.*
226
+ -->
227
+
228
+ <!--
229
+ ## Model Card Authors
230
+
231
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
232
+ -->
233
+
234
+ <!--
235
+ ## Model Card Contact
236
+
237
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
238
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.37.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bccf3a4b330ade82a3c47f01916113620f2d6de5b6194175fb3d59de37a7e487
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4e60b138da2ff026e163458431e4b45b5f621e3d8a24a4f50f584a39383e266
3
+ size 31631
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff