Safetensors
English
vidore
File size: 3,661 Bytes
e1efbc3
 
 
 
 
 
a87a3da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1da3373
 
 
 
 
 
 
 
 
a87a3da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
language:
- en
tags:
- vidore
---

# BiSigLip: Visual Retriever based on PaliGemma-3B with ColBERT strategy

ColPali is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features.
It is a [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images. 
It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models[add link]]() and first released in [this repository](https://github.com/ManuelFay/colpali)

## Model Description

This model is built iteratively, starting from an off-the-shelf [Siglip](https://huggingface.co/google/siglip-so400m-patch14-384) model. We finetuned it to create *BiSigLip*. 

## Model Training

### Dataset
Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%). 
Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination. 
A validation set is created with 2% of the samples to tune hyperparameters.

*Note: Multilingual data is present in the pretraining corpus of the language model (Gemma-2B) and potentially occurs during PaliGemma-3B's multimodal training.*

### Parameters

All models are trained for 1 epoch on the train set. Unless specified otherwise, we train models in `bfloat16` format, use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685)) 
with `alpha=32`  and `r=32` on the transformer layers from the language model, 
as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer. 
We train on an 8 GPU setup with data parallelism, a learning rate of 5e-5 with linear decay with 2.5% warmup steps, and a batch size of 32.

## Intended uses

#TODO

## Limitations

 - **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages.
 - **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support.

## License

ColPali based model (PaliGemma) is under `gemma` license as specified in its [model card](https://huggingface.co/google/paligemma-3b-mix-448). The adapters attached to the model are under MIT license.

## Contact

- Manuel Faysse: manuel.faysse@illuin.tech
- Hugues Sibille: hugues.sibille@illuin.tech
- Tony Wu: tony.wu@illuin.tech

## Citation

If you use any datasets or models from this organization in your research, please cite the original dataset as follows:

```bibtex
    @misc{faysse2024colpaliefficientdocumentretrieval,
      title={ColPali: Efficient Document Retrieval with Vision Language Models}, 
      author={Manuel Faysse and Hugues Sibille and Tony Wu and Gautier Viaud and Céline Hudelot and Pierre Colombo},
      year={2024},
      eprint={2407.01449},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2407.01449}, 
}
```