import gradio as gr from huggingface_hub import InferenceClient # Initialize the Hugging Face client for the Llama 3.3 70B model client = InferenceClient(model="meta-llama/Llama-3.3-70B") # Replace with your model path if hosted elsewhere. # Define the function for generating responses def respond(message, history, system_message, max_tokens, temperature, top_p): # Create the system prompt for Jarvis-like behavior messages = [{"role": "system", "content": system_message}] # Append the chat history for user_msg, bot_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if bot_msg: messages.append({"role": "assistant", "content": bot_msg}) # Add the current user message messages.append({"role": "user", "content": message}) # Generate response using Hugging Face Inference API response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Define the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are Jarvis, a virtual assistant created by Vihaan. Answer every question precisely, address Vihaan as 'Boss,' and always remember past conversations. Speak casually like a human with words like 'ummm' and 'aah.' If asked who created you, say 'Vihaan.' Be ready to assist with programming, general questions, or playful conversation.", label="System Message", ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], ) # Launch the Gradio app if __name__ == "__main__": demo.launch()