File size: 3,545 Bytes
f5943d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
from torch import nn
from PIL import Image
from einops import rearrange
from torchvision.transforms.v2 import (
    Compose,
    Resize,
    InterpolationMode,
    ToImage,
    ToDtype,
    Normalize,
)
import timm


class VisualHolder(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.visual = model

    def forward(self, x):
        return self.visual(x)


class ModelHolder(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.model = model

    def forward(self, x):
        return self.model(x)


class LinearPatchEmbedding(nn.Module):
    def __init__(self, conv):
        super().__init__()
        self.linear = nn.Linear(588, 1152)
        self.linear.weight.data = conv.weight.data.view(1152, -1)
        if conv.bias is not None:
            self.linear.bias.data = conv.bias.data

    def forward(self, x):
        return self.linear(x)


class MLP(nn.Module):
    def __init__(
        self,
        in_features: int,
        hidden_features: int = None,
        out_features: int = None,
        act_layer: nn.Module = nn.GELU,
    ) -> None:
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)

        torch.nn.init.kaiming_normal_(
            self.fc1.weight, mode="fan_in", nonlinearity="relu"
        )
        torch.nn.init.kaiming_normal_(
            self.fc2.weight, mode="fan_in", nonlinearity="relu"
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x


class VisionProjection(nn.Module):
    def __init__(self):
        super().__init__()

        image_embedding_dim = 1152
        model_dim = 2048
        hidden_dim = model_dim * 4

        self.mlp = MLP(image_embedding_dim, hidden_dim, model_dim)

    @property
    def device(self):
        return self.mlp.fc1.weight.device

    def forward(self, x):
        return self.mlp(x)


class VisionEncoder(nn.Module):
    def __init__(self) -> None:
        super().__init__()

        self.encoder = ModelHolder(
            VisualHolder(timm.create_model("vit_so400m_patch14_siglip_384"))
        )
        self.encoder.model.visual.patch_embed = LinearPatchEmbedding(
            self.encoder.model.visual.patch_embed.proj
        )
        self.encoder.model.visual.attn_pool = nn.Identity()

        self.projection = VisionProjection()

        self.preprocess = Compose(
            [
                Resize(size=(378, 378), interpolation=InterpolationMode.BICUBIC),
                ToImage(),
                ToDtype(torch.float32, scale=True),
                Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            ]
        )

    @property
    def device(self):
        return self.projection.mlp.fc1.weight.device

    @property
    def dtype(self):
        return self.projection.mlp.fc1.weight.dtype

    def __call__(self, image: Image) -> torch.Tensor:
        with torch.no_grad():
            x = (
                self.preprocess(image.convert("RGB"))
                .unsqueeze(0)
                .to(self.device, dtype=self.dtype)
            )
            x = rearrange(x, "b c (h p1) (w p2) -> b (h w) (c p1 p2)", p1=14, p2=14)

            x = self.encoder(x)
            x = self.projection(x)

            return x