|
from typing import Union |
|
|
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from einops import rearrange |
|
import PIL |
|
from torchvision.transforms.v2 import ( |
|
Compose, |
|
Resize, |
|
InterpolationMode, |
|
ToImage, |
|
ToDtype, |
|
Normalize, |
|
) |
|
from transformers.utils import is_flash_attn_2_available |
|
|
|
try: |
|
if is_flash_attn_2_available(): |
|
from flash_attn.modules.mha import FlashSelfAttention |
|
else: |
|
FlashSelfAttention = None |
|
except ImportError: |
|
FlashSelfAttention = None |
|
|
|
|
|
class Attention(nn.Module): |
|
|
|
def __init__(self, dim, num_heads=16, use_flash_attn=False): |
|
super().__init__() |
|
assert dim % num_heads == 0, "dim should be divisible by num_heads" |
|
|
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
|
|
self.qkv = nn.Linear(dim, dim * 3) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
if use_flash_attn and FlashSelfAttention is not None: |
|
self.flash_attn = FlashSelfAttention() |
|
else: |
|
self.flash_attn = None |
|
|
|
torch.nn.init.kaiming_normal_( |
|
self.qkv.weight, mode="fan_in", nonlinearity="relu" |
|
) |
|
torch.nn.init.kaiming_normal_( |
|
self.proj.weight, mode="fan_in", nonlinearity="relu" |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.flash_attn is not None: |
|
qkv = self.qkv(x) |
|
qkv = rearrange( |
|
qkv, "... (three h d) -> ... three h d", three=3, h=self.num_heads |
|
) |
|
attn_output = self.flash_attn(qkv) |
|
output = rearrange(attn_output, "... h d -> ... (h d)") |
|
output = self.proj(output) |
|
return output |
|
else: |
|
B, N, C = x.shape |
|
qkv = ( |
|
self.qkv(x) |
|
.reshape(B, N, 3, self.num_heads, self.head_dim) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
q, k, v = qkv.unbind(0) |
|
|
|
x = F.scaled_dot_product_attention(q, k, v) |
|
|
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class VitBlock(nn.Module): |
|
|
|
def __init__(self, embed_dim, use_flash_attn=False): |
|
super().__init__() |
|
self.attn = Attention(embed_dim, use_flash_attn=use_flash_attn) |
|
self.mlp = MLP(embed_dim, 4304) |
|
self.norm1 = nn.LayerNorm(embed_dim) |
|
self.norm2 = nn.LayerNorm(embed_dim) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.norm1(x)) |
|
x = x + self.mlp(self.norm2(x)) |
|
return x |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
|
|
def __init__(self, use_flash_attn=False): |
|
super().__init__() |
|
|
|
embed_len = 729 |
|
embed_dim = 1152 |
|
|
|
self.patch_embed = LinearPatchEmbedding() |
|
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02) |
|
self.blocks = nn.Sequential( |
|
*[VitBlock(embed_dim, use_flash_attn=use_flash_attn) for _ in range(27)] |
|
) |
|
self.norm = nn.LayerNorm(embed_dim) |
|
|
|
def forward(self, x): |
|
x = self.patch_embed(x) |
|
x = x + self.pos_embed |
|
for block in self.blocks: |
|
x = block(x) |
|
return self.norm(x) |
|
|
|
|
|
class EncoderWrapper(nn.Module): |
|
|
|
def __init__(self, use_flash_attn=False): |
|
super().__init__() |
|
self.model = nn.ModuleDict({"visual": VisionTransformer(use_flash_attn)}) |
|
|
|
def forward(self, x): |
|
return self.model["visual"](x) |
|
|
|
|
|
class LinearPatchEmbedding(nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.linear = nn.Linear(588, 1152) |
|
|
|
def forward(self, x): |
|
b, c, hp1, wp2 = x.shape |
|
p1, p2 = 14, 14 |
|
h, w = hp1 // p1, wp2 // p2 |
|
x = x.reshape(b, c, h, p1, w, p2) |
|
x = x.permute(0, 2, 4, 1, 3, 5) |
|
x = x.reshape(b, h * w, c * p1 * p2) |
|
|
|
return self.linear(x) |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__( |
|
self, |
|
in_features: int, |
|
hidden_features: int = None, |
|
out_features: int = None, |
|
) -> None: |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = nn.GELU(approximate="tanh") |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
|
|
torch.nn.init.kaiming_normal_( |
|
self.fc1.weight, mode="fan_in", nonlinearity="relu" |
|
) |
|
torch.nn.init.kaiming_normal_( |
|
self.fc2.weight, mode="fan_in", nonlinearity="relu" |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
class VisionProjection(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
image_embedding_dim = 1152 |
|
model_dim = 2048 |
|
hidden_dim = model_dim * 4 |
|
|
|
self.mlp = MLP(image_embedding_dim * 2, hidden_dim, model_dim) |
|
|
|
@property |
|
def device(self): |
|
return self.mlp.fc1.weight.device |
|
|
|
def forward(self, x): |
|
return self.mlp(x) |
|
|
|
|
|
def create_patches(image, patch_size=(378, 378)): |
|
assert image.dim() == 3, "Image must be in CHW format" |
|
|
|
_, height, width = image.shape |
|
patch_height, patch_width = patch_size |
|
|
|
if height == patch_height and width == patch_width: |
|
return [] |
|
|
|
|
|
patches = [] |
|
for i in range(0, height, patch_height): |
|
row_patches = [] |
|
for j in range(0, width, patch_width): |
|
patch = image[:, i : i + patch_height, j : j + patch_width] |
|
row_patches.append(patch) |
|
patches.append(torch.stack(row_patches)) |
|
return patches |
|
|
|
|
|
class VisionEncoder(nn.Module): |
|
|
|
def __init__(self, use_flash_attn=False): |
|
super().__init__() |
|
|
|
self.encoder = EncoderWrapper(use_flash_attn) |
|
self.projection = VisionProjection() |
|
self.supported_sizes = [(378, 378), (378, 756), (756, 378), (756, 756)] |
|
|
|
@property |
|
def device(self): |
|
return self.projection.mlp.fc1.weight.device |
|
|
|
@property |
|
def dtype(self): |
|
return self.projection.mlp.fc1.weight.dtype |
|
|
|
def preprocess(self, image: PIL.Image.Image): |
|
width, height = image.size |
|
max_dim = max(width, height) |
|
if max_dim < 512: |
|
im_size = (378, 378) |
|
else: |
|
aspect_ratio = width / height |
|
im_size = min( |
|
self.supported_sizes, |
|
key=lambda size: ( |
|
abs((size[1] / size[0]) - aspect_ratio), |
|
abs(size[0] - width) + abs(size[1] - height), |
|
), |
|
) |
|
|
|
return Compose( |
|
[ |
|
Resize(size=im_size, interpolation=InterpolationMode.BICUBIC), |
|
ToImage(), |
|
ToDtype(torch.float32, scale=True), |
|
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
] |
|
)(image) |
|
|
|
def forward( |
|
self, images: Union[PIL.Image.Image, list[PIL.Image.Image], torch.Tensor] |
|
) -> torch.Tensor: |
|
im_list = None |
|
if isinstance(images, torch.Tensor): |
|
|
|
assert ( |
|
len(images.shape) == 4 |
|
), "Tensor input must have dimensions (B, C, H, W)" |
|
im_list = list(images) |
|
elif isinstance(images, PIL.Image.Image): |
|
im_list = [images] |
|
elif isinstance(images, list): |
|
im_list = images |
|
else: |
|
raise ValueError( |
|
"Input must be a PIL image, list of PIL images, or a tensor" |
|
) |
|
|
|
|
|
|
|
if not isinstance(im_list[0], torch.Tensor): |
|
im_list = [self.preprocess(im.convert("RGB")) for im in im_list] |
|
|
|
patches = [create_patches(im) for im in im_list] |
|
flat_patches = [patch for image_patches in patches for patch in image_patches] |
|
|
|
|
|
|
|
resized_images = [ |
|
F.interpolate(im.unsqueeze(0), size=(378, 378), mode="bilinear") |
|
for im in im_list |
|
] |
|
|
|
combined_images = torch.cat([*resized_images, *flat_patches], dim=0) |
|
combined_images = combined_images.to(self.device, dtype=self.dtype) |
|
|
|
combined_features = self.encoder(combined_images) |
|
|
|
full_img_features = combined_features[: len(im_list)] |
|
patch_features = ( |
|
combined_features[len(im_list) :].transpose(1, 2).view(-1, 1152, 27, 27) |
|
) |
|
|
|
|
|
reshaped_patch_features = [] |
|
patch_idx = 0 |
|
for i, patch_set in enumerate(patches): |
|
if len(patch_set) == 0: |
|
reshaped_patch_features.append( |
|
full_img_features[i].transpose(0, 1).view(1152, 27, 27) |
|
) |
|
else: |
|
sample_features = [] |
|
for row_patches in patch_set: |
|
row_len = len(row_patches) |
|
row_features = patch_features[ |
|
patch_idx : patch_idx + row_len |
|
] |
|
row_features = torch.cat( |
|
list(row_features), dim=2 |
|
) |
|
patch_idx += row_len |
|
sample_features.append(row_features) |
|
sample_features = torch.cat(sample_features, dim=1) |
|
sample_features = F.interpolate( |
|
sample_features.unsqueeze(0), size=(27, 27), mode="bilinear" |
|
).squeeze(0) |
|
reshaped_patch_features.append(sample_features) |
|
reshaped_patch_features = ( |
|
torch.stack(reshaped_patch_features).view(-1, 1152, 729).transpose(1, 2) |
|
) |
|
|
|
final_features = torch.cat([full_img_features, reshaped_patch_features], dim=2) |
|
|
|
return self.projection(final_features) |
|
|