Upload Moondream
Browse files- config.json +2 -2
- configuration_moondream.py +78 -51
- generation_config.json +1 -1
- modeling_phi.py +1072 -571
config.json
CHANGED
@@ -8,8 +8,8 @@
|
|
8 |
},
|
9 |
"model_type": "moondream1",
|
10 |
"phi_config": {
|
11 |
-
"model_type": "phi
|
12 |
},
|
13 |
"torch_dtype": "float16",
|
14 |
-
"transformers_version": "4.
|
15 |
}
|
|
|
8 |
},
|
9 |
"model_type": "moondream1",
|
10 |
"phi_config": {
|
11 |
+
"model_type": "phi"
|
12 |
},
|
13 |
"torch_dtype": "float16",
|
14 |
+
"transformers_version": "4.38.2"
|
15 |
}
|
configuration_moondream.py
CHANGED
@@ -5,65 +5,92 @@ import math
|
|
5 |
|
6 |
|
7 |
class PhiConfig(PretrainedConfig):
|
8 |
-
model_type = "phi
|
|
|
9 |
|
10 |
def __init__(
|
11 |
self,
|
12 |
-
vocab_size
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
33 |
):
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
super().__init__(
|
38 |
-
|
39 |
-
|
40 |
-
n_embd=n_embd,
|
41 |
-
n_layer=n_layer,
|
42 |
-
n_inner=n_inner,
|
43 |
-
n_head=n_head,
|
44 |
-
n_head_kv=n_head_kv,
|
45 |
-
activation_function=activation_function,
|
46 |
-
attn_pdrop=attn_pdrop,
|
47 |
-
embd_pdrop=embd_pdrop,
|
48 |
-
resid_pdrop=resid_pdrop,
|
49 |
-
layer_norm_epsilon=layer_norm_epsilon,
|
50 |
-
initializer_range=initializer_range,
|
51 |
-
pad_vocab_size_multiple=pad_vocab_size_multiple,
|
52 |
tie_word_embeddings=tie_word_embeddings,
|
53 |
-
|
54 |
-
**kwargs
|
55 |
)
|
56 |
-
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
57 |
-
self.flash_attn = flash_attn
|
58 |
-
self.flash_rotary = flash_rotary
|
59 |
-
self.fused_dense = fused_dense
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
"
|
64 |
-
|
65 |
-
"
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
class MoondreamConfig(PretrainedConfig):
|
|
|
5 |
|
6 |
|
7 |
class PhiConfig(PretrainedConfig):
|
8 |
+
model_type = "phi"
|
9 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
10 |
|
11 |
def __init__(
|
12 |
self,
|
13 |
+
vocab_size=51200,
|
14 |
+
hidden_size=2048,
|
15 |
+
intermediate_size=8192,
|
16 |
+
num_hidden_layers=24,
|
17 |
+
num_attention_heads=32,
|
18 |
+
num_key_value_heads=None,
|
19 |
+
resid_pdrop=0.0,
|
20 |
+
embd_pdrop=0.0,
|
21 |
+
attention_dropout=0.0,
|
22 |
+
hidden_act="gelu_new",
|
23 |
+
max_position_embeddings=2048,
|
24 |
+
initializer_range=0.02,
|
25 |
+
layer_norm_eps=1e-5,
|
26 |
+
use_cache=True,
|
27 |
+
tie_word_embeddings=False,
|
28 |
+
rope_theta=10000.0,
|
29 |
+
rope_scaling=None,
|
30 |
+
partial_rotary_factor=0.5,
|
31 |
+
qk_layernorm=False,
|
32 |
+
bos_token_id=1,
|
33 |
+
eos_token_id=2,
|
34 |
+
**kwargs,
|
35 |
):
|
36 |
+
self.vocab_size = vocab_size
|
37 |
+
self.hidden_size = hidden_size
|
38 |
+
self.intermediate_size = intermediate_size
|
39 |
+
self.num_hidden_layers = num_hidden_layers
|
40 |
+
self.num_attention_heads = num_attention_heads
|
41 |
+
|
42 |
+
if num_key_value_heads is None:
|
43 |
+
num_key_value_heads = num_attention_heads
|
44 |
+
|
45 |
+
self.num_key_value_heads = num_key_value_heads
|
46 |
+
self.resid_pdrop = resid_pdrop
|
47 |
+
self.embd_pdrop = embd_pdrop
|
48 |
+
self.attention_dropout = attention_dropout
|
49 |
+
self.hidden_act = hidden_act
|
50 |
+
self.max_position_embeddings = max_position_embeddings
|
51 |
+
self.initializer_range = initializer_range
|
52 |
+
self.layer_norm_eps = layer_norm_eps
|
53 |
+
self.use_cache = use_cache
|
54 |
+
self.rope_theta = rope_theta
|
55 |
+
self.rope_scaling = rope_scaling
|
56 |
+
self.partial_rotary_factor = partial_rotary_factor
|
57 |
+
self.qk_layernorm = qk_layernorm
|
58 |
+
self._rope_scaling_validation()
|
59 |
+
|
60 |
super().__init__(
|
61 |
+
bos_token_id=bos_token_id,
|
62 |
+
eos_token_id=eos_token_id,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
tie_word_embeddings=tie_word_embeddings,
|
64 |
+
**kwargs,
|
|
|
65 |
)
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
68 |
+
def _rope_scaling_validation(self):
|
69 |
+
"""
|
70 |
+
Validate the `rope_scaling` configuration.
|
71 |
+
"""
|
72 |
+
if self.rope_scaling is None:
|
73 |
+
return
|
74 |
+
|
75 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
76 |
+
raise ValueError(
|
77 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
78 |
+
f"got {self.rope_scaling}"
|
79 |
+
)
|
80 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
81 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
82 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
83 |
+
raise ValueError(
|
84 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
85 |
+
)
|
86 |
+
if (
|
87 |
+
rope_scaling_factor is None
|
88 |
+
or not isinstance(rope_scaling_factor, float)
|
89 |
+
or rope_scaling_factor <= 1.0
|
90 |
+
):
|
91 |
+
raise ValueError(
|
92 |
+
f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}"
|
93 |
+
)
|
94 |
|
95 |
|
96 |
class MoondreamConfig(PretrainedConfig):
|
generation_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
3 |
-
"transformers_version": "4.
|
4 |
}
|
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.38.2"
|
4 |
}
|
modeling_phi.py
CHANGED
@@ -1,720 +1,1221 @@
|
|
1 |
-
#
|
2 |
-
#
|
3 |
#
|
4 |
-
#
|
5 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
from dataclasses import dataclass, field
|
8 |
-
from typing import Any, Dict, Optional, Union, Tuple
|
9 |
|
10 |
import math
|
|
|
|
|
11 |
import torch
|
12 |
-
import torch.nn as
|
13 |
-
|
14 |
-
from
|
15 |
-
from
|
16 |
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
from .configuration_moondream import PhiConfig
|
19 |
|
20 |
-
FusedDense = None
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
@dataclass
|
24 |
-
class InferenceParams:
|
25 |
-
max_seqlen: int
|
26 |
-
max_batch_size: int
|
27 |
-
seqlen_offset: int = 0
|
28 |
-
batch_size_offset: int = 0
|
29 |
-
key_value_memory_dict: Dict[str, Any] = field(default_factory=dict)
|
30 |
-
lengths_per_sample: torch.Tensor = None
|
31 |
|
|
|
32 |
|
33 |
-
class Embedding(nn.Module):
|
34 |
-
def __init__(self, config: PretrainedConfig):
|
35 |
-
super().__init__()
|
36 |
-
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
37 |
-
self.drop = nn.Dropout(config.embd_pdrop)
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
x1, x2 = x_rot.chunk(2, dim=-1)
|
47 |
-
c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1)
|
48 |
-
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], dim=-1)
|
49 |
-
return torch.cat([x_rot.to(x.dtype), x_pass], dim=-1)
|
50 |
-
|
51 |
-
|
52 |
-
def _apply_rotary_emb_kv(
|
53 |
-
kv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor
|
54 |
-
) -> torch.FloatTensor:
|
55 |
-
seqlen, rotary_dim = kv.shape[1], cos.shape[-1] * 2
|
56 |
-
k_rot = kv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1)
|
57 |
-
k_pass = kv[:, :, 0, :, rotary_dim:]
|
58 |
-
c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1)
|
59 |
-
k_rot = torch.cat(
|
60 |
-
[k_rot[0] * c - k_rot[1] * s, k_rot[0] * s + k_rot[1] * c], dim=-1
|
61 |
-
)
|
62 |
-
return torch.cat(
|
63 |
-
[torch.cat([k_rot, k_pass], dim=-1).unsqueeze(2), kv[:, :, 1:2, :, :]], dim=2
|
64 |
)
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
) -> torch.FloatTensor:
|
70 |
-
seqlen, rotary_dim = qkv.shape[1], cos.shape[1] * 2
|
71 |
-
|
72 |
-
c = cos[:seqlen].unsqueeze(1)
|
73 |
-
s = sin[:seqlen].unsqueeze(1)
|
74 |
-
|
75 |
-
qkv_rot = torch.stack(
|
76 |
-
[
|
77 |
-
torch.cat(
|
78 |
-
[
|
79 |
-
qkv[:, :, i, :, : rotary_dim // 2] * c
|
80 |
-
- qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * s,
|
81 |
-
qkv[:, :, i, :, : rotary_dim // 2] * s
|
82 |
-
+ qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * c,
|
83 |
-
],
|
84 |
-
dim=-1,
|
85 |
-
).to(qkv.dtype)
|
86 |
-
for i in range(2)
|
87 |
-
],
|
88 |
-
dim=2,
|
89 |
)
|
90 |
|
91 |
-
qkv_pass = qkv[:, :, :2, :, rotary_dim:].unsqueeze(2)
|
92 |
-
qkv_v = qkv[:, :, 2:3, :, :]
|
93 |
-
return torch.cat([qkv_rot, qkv_pass, qkv_v], dim=2)
|
94 |
|
95 |
-
|
96 |
-
class
|
97 |
-
|
98 |
-
def __init__(
|
99 |
-
self,
|
100 |
-
dim: int,
|
101 |
-
base: int = 10000,
|
102 |
-
scale_base: Optional[float] = None,
|
103 |
-
pos_idx_in_fp32: bool = True,
|
104 |
-
max_position_embeddings: int = 2048,
|
105 |
-
device: Optional[str] = None,
|
106 |
-
) -> None:
|
107 |
super().__init__()
|
108 |
-
# fp32 is preferred since the output of `torch.arange` can be quite large and bf16 would lose a lot of precision
|
109 |
-
self.dim, self.base, self.pos_idx_in_fp32, self.device = (
|
110 |
-
dim,
|
111 |
-
float(base),
|
112 |
-
pos_idx_in_fp32,
|
113 |
-
device,
|
114 |
-
)
|
115 |
-
self.max_position_embeddings = max_position_embeddings
|
116 |
-
if scale_base is not None:
|
117 |
-
raise NotImplementedError
|
118 |
|
119 |
-
|
120 |
-
self.
|
121 |
-
|
|
|
|
|
122 |
)
|
123 |
-
self.register_buffer(
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
125 |
)
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
128 |
)
|
129 |
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
return (
|
132 |
-
(
|
133 |
-
|
134 |
-
torch.arange(0, dim, 2, device=device, dtype=torch.float32)
|
135 |
-
+ 0.4 * dim
|
136 |
-
)
|
137 |
-
/ (1.4 * dim)
|
138 |
-
)
|
139 |
-
if scale_base is not None
|
140 |
-
else None
|
141 |
)
|
142 |
|
143 |
-
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
|
144 |
-
return 1.0 / (
|
145 |
-
self.base
|
146 |
-
** (
|
147 |
-
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
|
148 |
-
/ self.dim
|
149 |
-
)
|
150 |
-
)
|
151 |
|
152 |
-
|
|
|
|
|
|
|
|
|
153 |
self,
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
t = torch.arange(
|
160 |
-
|
161 |
-
device=device,
|
162 |
-
dtype=torch.float32 if self.pos_idx_in_fp32 else self.inv_freq.dtype,
|
163 |
)
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
)
|
169 |
|
170 |
-
freqs = torch.outer(t, inv_freq)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
return (result / scale).to(dtype) if scale is not None else result.to(dtype)
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
self.
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
)
|
186 |
-
self.
|
187 |
-
|
188 |
)
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
def forward(
|
194 |
self,
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
)
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
)
|
210 |
|
211 |
-
|
212 |
-
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
219 |
)
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
-
|
223 |
-
def __init__(
|
224 |
-
self,
|
225 |
-
config: PretrainedConfig,
|
226 |
-
n_inner: Optional[int] = None,
|
227 |
-
act_fn: Optional[str] = None,
|
228 |
-
) -> None:
|
229 |
-
super().__init__()
|
230 |
-
n_inner = n_inner or getattr(config, "n_inner", None) or 4 * config.n_embd
|
231 |
-
act_fn = act_fn or config.activation_function
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
236 |
|
237 |
-
|
238 |
-
|
239 |
|
|
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
def __init__(
|
244 |
-
self,
|
245 |
-
causal: bool = True,
|
246 |
-
softmax_scale: Optional[float] = None,
|
247 |
-
attention_dropout: float = 0.0,
|
248 |
-
):
|
249 |
-
super().__init__()
|
250 |
-
self.causal = causal
|
251 |
-
self.softmax_scale = softmax_scale
|
252 |
-
self.drop = nn.Dropout(attention_dropout)
|
253 |
|
254 |
-
|
255 |
-
@torch.autocast("cuda", enabled=False)
|
256 |
-
def forward(
|
257 |
-
self,
|
258 |
-
qkv: torch.FloatTensor,
|
259 |
-
causal: Optional[bool] = None,
|
260 |
-
key_padding_mask: Optional[torch.BoolTensor] = None,
|
261 |
-
):
|
262 |
-
q, k, v = qkv.chunk(3, dim=-1)
|
263 |
-
scale = self.softmax_scale or 1.0 / q.size(-1) ** 0.5
|
264 |
|
265 |
-
scores = (
|
266 |
-
torch.einsum("bthd,bshd->bhts", q.to(torch.float32), k.to(torch.float32))
|
267 |
-
* scale
|
268 |
-
)
|
269 |
-
if causal or self.causal:
|
270 |
-
scores.triu_(1).fill_(-10000.0)
|
271 |
-
if key_padding_mask is not None:
|
272 |
-
scores.masked_fill_(key_padding_mask[:, None, None, :], -10000.0)
|
273 |
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
276 |
|
|
|
|
|
|
|
277 |
|
278 |
-
# Flash Attention
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
self.causal = causal
|
283 |
-
self.softmax_scale = softmax_scale
|
284 |
-
self.drop = nn.Dropout(attention_dropout)
|
285 |
|
286 |
-
@torch.autocast("cpu", enabled=False)
|
287 |
-
@torch.autocast("cuda", enabled=False)
|
288 |
def forward(
|
289 |
self,
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
)
|
318 |
-
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
319 |
-
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
320 |
|
321 |
-
|
322 |
-
|
323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
)
|
325 |
-
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
|
326 |
-
causal_mask = cols > rows + seqlen_k - seqlen_q
|
327 |
-
scores = scores.masked_fill(causal_mask, -10000.0)
|
328 |
-
|
329 |
-
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
330 |
-
attention = self.drop(attention)
|
331 |
-
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
332 |
-
|
333 |
-
return output
|
334 |
-
|
335 |
-
|
336 |
-
def _find_mha_dims(
|
337 |
-
config: PretrainedConfig,
|
338 |
-
n_head: Optional[int] = None,
|
339 |
-
n_head_kv: Optional[int] = None,
|
340 |
-
head_dim: Optional[int] = None,
|
341 |
-
) -> Tuple[int, int]:
|
342 |
-
if n_head is None and head_dim is None:
|
343 |
-
head_dim = config.n_embd // config.n_head
|
344 |
-
n_head = config.n_head
|
345 |
-
elif n_head is None or head_dim is None:
|
346 |
-
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
347 |
-
if n_head_kv is None:
|
348 |
-
n_head_kv = getattr(config, "n_head_kv", None) or n_head
|
349 |
-
return n_head, n_head_kv, head_dim
|
350 |
-
|
351 |
-
|
352 |
-
def _update_kv_cache(
|
353 |
-
kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int
|
354 |
-
) -> torch.FloatTensor:
|
355 |
-
num_heads, head_dim = kv.shape[-2:]
|
356 |
-
layer_memory = inference_params.key_value_memory_dict.setdefault(
|
357 |
-
layer_idx,
|
358 |
-
torch.empty(
|
359 |
-
inference_params.max_batch_size,
|
360 |
-
inference_params.max_seqlen,
|
361 |
-
2,
|
362 |
-
num_heads,
|
363 |
-
head_dim,
|
364 |
-
dtype=kv.dtype,
|
365 |
-
device=kv.device,
|
366 |
-
),
|
367 |
-
)
|
368 |
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
|
377 |
-
|
378 |
-
|
379 |
-
inference_params.key_value_memory_dict[layer_idx] = layer_memory
|
380 |
|
381 |
-
|
382 |
-
|
383 |
|
|
|
384 |
|
385 |
-
#
|
386 |
-
|
387 |
-
def __init__(
|
388 |
self,
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
n_head=None,
|
396 |
-
n_head_kv=None,
|
397 |
-
head_dim=None,
|
398 |
-
bias=True,
|
399 |
-
causal=True,
|
400 |
softmax_scale=None,
|
401 |
-
layer_idx=None,
|
402 |
-
return_residual=False,
|
403 |
-
checkpointing=False,
|
404 |
):
|
405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
-
#
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
|
|
|
|
|
|
416 |
)
|
417 |
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
|
|
|
|
435 |
|
436 |
-
|
437 |
-
attn_kwargs = {
|
438 |
-
"causal": causal,
|
439 |
-
"softmax_scale": softmax_scale,
|
440 |
-
"attention_dropout": config.attn_pdrop,
|
441 |
-
}
|
442 |
-
self.inner_attn = SelfAttention(**attn_kwargs)
|
443 |
-
self.inner_cross_attn = CrossAttention(**attn_kwargs)
|
444 |
|
445 |
-
|
446 |
-
|
447 |
-
self
|
|
|
|
|
|
|
448 |
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
qkv = rearrange(
|
453 |
-
self.Wqkv(x), "... (three h d) -> ... three h d", three=3, d=self.head_dim
|
454 |
)
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
torch.utils.checkpoint.checkpoint
|
459 |
-
if self.checkpointing
|
460 |
-
else lambda f, *args, **kwargs: f(*args, **kwargs)
|
461 |
)
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
|
478 |
-
|
479 |
-
|
|
|
|
|
|
|
|
|
|
|
480 |
)
|
481 |
-
causal = None if seqlen_offset == 0 else False
|
482 |
-
if self.rotary_dim > 0:
|
483 |
-
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
|
484 |
|
485 |
-
if past_key_values is not None:
|
486 |
-
kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
|
487 |
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
)
|
493 |
|
494 |
-
return attn_func(
|
495 |
-
self.inner_cross_attn,
|
496 |
-
q,
|
497 |
-
kv,
|
498 |
-
key_padding_mask=key_padding_mask,
|
499 |
-
causal=causal,
|
500 |
-
)
|
501 |
|
502 |
-
|
503 |
-
|
504 |
-
x: torch.FloatTensor,
|
505 |
-
past_key_values: Optional[InferenceParams] = None,
|
506 |
-
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
507 |
-
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
508 |
-
attention_mask = attention_mask.bool() if attention_mask is not None else None
|
509 |
-
use_cross_attn = self.n_head != self.n_head_kv or past_key_values is not None
|
510 |
-
attn_output_function = (
|
511 |
-
self._forward_cross_attn if use_cross_attn else self._forward_self_attn
|
512 |
-
)
|
513 |
-
attn_output = (
|
514 |
-
attn_output_function(x, past_key_values, attention_mask)
|
515 |
-
if use_cross_attn
|
516 |
-
else attn_output_function(x, attention_mask)
|
517 |
-
)
|
518 |
-
output = self.out_proj(rearrange(attn_output, "... h d -> ... (h d)"))
|
519 |
-
return (output, x) if self.return_residual else output
|
520 |
-
|
521 |
-
|
522 |
-
# Parallel block. This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
|
523 |
-
class ParallelBlock(nn.Module):
|
524 |
-
def __init__(self, config: PretrainedConfig, block_idx: Optional[int] = None):
|
525 |
super().__init__()
|
526 |
-
self.
|
|
|
|
|
|
|
|
|
527 |
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
528 |
-
self.block_idx = block_idx
|
529 |
-
self.mixer = MHA(config, layer_idx=block_idx)
|
530 |
-
self.mlp = MLP(config)
|
531 |
|
532 |
def forward(
|
533 |
self,
|
534 |
-
hidden_states: torch.
|
535 |
-
|
536 |
-
|
537 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
residual = hidden_states
|
|
|
539 |
hidden_states = self.ln(hidden_states)
|
540 |
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
attention_mask=attention_mask,
|
|
|
|
|
|
|
|
|
545 |
)
|
546 |
-
if isinstance(attn_outputs, tuple):
|
547 |
-
attn_outputs = attn_outputs[0]
|
548 |
-
|
549 |
attn_outputs = self.resid_dropout(attn_outputs)
|
|
|
550 |
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
551 |
-
|
|
|
552 |
|
|
|
|
|
553 |
|
554 |
-
|
555 |
-
|
556 |
|
557 |
-
|
558 |
-
super().__init__()
|
559 |
-
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
560 |
-
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
561 |
|
562 |
-
def forward(self, hidden_states):
|
563 |
-
return self.linear(self.ln(hidden_states)).to(torch.float32)
|
564 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
565 |
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
def __init__(self, shift_labels: bool = True) -> None:
|
570 |
super().__init__()
|
571 |
-
self.
|
572 |
-
|
|
|
573 |
|
574 |
-
def forward(
|
575 |
-
self
|
576 |
-
) -> torch.FloatTensor:
|
577 |
-
if self.shift_labels:
|
578 |
-
logits, labels = logits[..., :-1, :], labels[..., 1:]
|
579 |
-
return self.loss_fct(logits.reshape(-1, logits.size(-1)), labels.reshape(-1))
|
580 |
|
581 |
|
582 |
-
class PhiPreTrainedModel
|
583 |
-
|
584 |
-
|
585 |
-
supports_gradient_checkpointing = False
|
586 |
-
_no_split_modules = ["ParallelBlock"]
|
587 |
|
588 |
-
|
589 |
-
|
|
|
590 |
|
591 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
592 |
self,
|
593 |
input_ids: torch.LongTensor = None,
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
|
|
606 |
)
|
607 |
-
|
608 |
-
|
609 |
-
if
|
610 |
-
else
|
611 |
)
|
|
|
612 |
|
613 |
-
|
614 |
-
|
615 |
-
if inputs_embeds is not None
|
616 |
-
else {"input_ids": input_ids}
|
617 |
)
|
618 |
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
seqlen_offset=0,
|
624 |
-
batch_size_offset=0,
|
625 |
-
key_value_memory_dict={},
|
626 |
-
lengths_per_sample=None,
|
627 |
)
|
|
|
|
|
|
|
|
|
628 |
else:
|
629 |
-
|
630 |
-
args = {"input_ids": input_ids[:, -1].unsqueeze(-1)}
|
631 |
|
632 |
-
|
633 |
-
**args,
|
634 |
-
"past_key_values": past_key_values,
|
635 |
-
"attention_mask": attention_mask,
|
636 |
-
}
|
637 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
638 |
|
639 |
-
|
640 |
-
|
641 |
-
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
642 |
|
643 |
-
|
644 |
-
super().__init__(config)
|
645 |
-
self.embd = Embedding(config)
|
646 |
-
self.h = nn.ModuleList(
|
647 |
-
[ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
|
648 |
-
)
|
649 |
-
self.gradient_checkpointing = config.gradient_checkpointing
|
650 |
-
self.post_init()
|
651 |
|
652 |
-
|
653 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
654 |
|
655 |
-
|
656 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
657 |
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
if
|
675 |
-
else
|
|
|
|
|
|
|
|
|
|
|
|
|
676 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
677 |
|
678 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
679 |
|
680 |
|
681 |
class PhiForCausalLM(PhiPreTrainedModel):
|
682 |
-
|
683 |
-
[""],
|
684 |
-
[r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"],
|
685 |
-
)
|
686 |
|
687 |
-
|
|
|
688 |
super().__init__(config)
|
689 |
self.transformer = PhiModel(config)
|
|
|
690 |
self.lm_head = CausalLMHead(config)
|
691 |
-
|
|
|
692 |
self.post_init()
|
693 |
|
694 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
695 |
return self.lm_head.linear
|
696 |
|
697 |
-
|
|
|
698 |
self.lm_head.linear = new_embeddings
|
699 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
700 |
def forward(
|
701 |
self,
|
702 |
input_ids: torch.LongTensor = None,
|
703 |
-
|
704 |
-
|
705 |
-
|
|
|
706 |
labels: Optional[torch.LongTensor] = None,
|
707 |
-
|
708 |
-
|
709 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
710 |
input_ids=input_ids,
|
711 |
-
inputs_embeds=inputs_embeds,
|
712 |
-
past_key_values=past_key_values,
|
713 |
attention_mask=attention_mask,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
714 |
)
|
715 |
-
|
716 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
717 |
|
718 |
return CausalLMOutputWithPast(
|
719 |
-
loss=loss,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
720 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" PyTorch Phi model."""
|
17 |
|
|
|
|
|
18 |
|
19 |
import math
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
|
27 |
|
28 |
+
from transformers.activations import ACT2FN
|
29 |
+
from transformers.cache_utils import Cache, DynamicCache
|
30 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
31 |
+
from transformers.modeling_outputs import (
|
32 |
+
BaseModelOutputWithPast,
|
33 |
+
CausalLMOutputWithPast,
|
34 |
+
SequenceClassifierOutputWithPast,
|
35 |
+
)
|
36 |
+
from transformers.modeling_utils import PreTrainedModel
|
37 |
+
from transformers.utils import (
|
38 |
+
is_flash_attn_2_available,
|
39 |
+
is_flash_attn_greater_or_equal_2_10,
|
40 |
+
logging,
|
41 |
+
)
|
42 |
from .configuration_moondream import PhiConfig
|
43 |
|
|
|
44 |
|
45 |
+
try: # noqa: SIM105
|
46 |
+
if is_flash_attn_2_available():
|
47 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
48 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
49 |
+
except ImportError:
|
50 |
+
# Workaround for https://github.com/huggingface/transformers/issues/28459,
|
51 |
+
# don't move to contextlib.suppress(ImportError)
|
52 |
+
pass
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
59 |
+
def _get_unpad_data(attention_mask):
|
60 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
61 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
62 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
63 |
+
cu_seqlens = F.pad(
|
64 |
+
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
)
|
66 |
+
return (
|
67 |
+
indices,
|
68 |
+
cu_seqlens,
|
69 |
+
max_seqlen_in_batch,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
)
|
71 |
|
|
|
|
|
|
|
72 |
|
73 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Phi
|
74 |
+
class PhiRotaryEmbedding(nn.Module):
|
75 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
self.dim = dim
|
79 |
+
self.max_position_embeddings = max_position_embeddings
|
80 |
+
self.base = base
|
81 |
+
inv_freq = 1.0 / (
|
82 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
83 |
)
|
84 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
85 |
+
|
86 |
+
# Build here to make `torch.jit.trace` work.
|
87 |
+
self._set_cos_sin_cache(
|
88 |
+
seq_len=max_position_embeddings,
|
89 |
+
device=self.inv_freq.device,
|
90 |
+
dtype=torch.get_default_dtype(),
|
91 |
)
|
92 |
+
|
93 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
94 |
+
self.max_seq_len_cached = seq_len
|
95 |
+
t = torch.arange(
|
96 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
97 |
)
|
98 |
|
99 |
+
freqs = torch.outer(t, self.inv_freq)
|
100 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
101 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
102 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
103 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
104 |
+
|
105 |
+
def forward(self, x, seq_len=None):
|
106 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
107 |
+
if seq_len > self.max_seq_len_cached:
|
108 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
109 |
+
|
110 |
return (
|
111 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
112 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
)
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Phi
|
117 |
+
class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding):
|
118 |
+
"""PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
119 |
+
|
120 |
+
def __init__(
|
121 |
self,
|
122 |
+
dim,
|
123 |
+
max_position_embeddings=2048,
|
124 |
+
base=10000,
|
125 |
+
device=None,
|
126 |
+
scaling_factor=1.0,
|
127 |
+
):
|
128 |
+
self.scaling_factor = scaling_factor
|
129 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
130 |
+
|
131 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
132 |
+
self.max_seq_len_cached = seq_len
|
133 |
t = torch.arange(
|
134 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
|
|
|
|
135 |
)
|
136 |
+
t = t / self.scaling_factor
|
137 |
+
|
138 |
+
freqs = torch.outer(t, self.inv_freq)
|
139 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
140 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
141 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
142 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
143 |
+
|
144 |
+
|
145 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Phi
|
146 |
+
class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding):
|
147 |
+
"""PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
148 |
+
|
149 |
+
def __init__(
|
150 |
+
self,
|
151 |
+
dim,
|
152 |
+
max_position_embeddings=2048,
|
153 |
+
base=10000,
|
154 |
+
device=None,
|
155 |
+
scaling_factor=1.0,
|
156 |
+
):
|
157 |
+
self.scaling_factor = scaling_factor
|
158 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
159 |
+
|
160 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
161 |
+
self.max_seq_len_cached = seq_len
|
162 |
+
|
163 |
+
if seq_len > self.max_position_embeddings:
|
164 |
+
base = self.base * (
|
165 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
166 |
+
- (self.scaling_factor - 1)
|
167 |
+
) ** (self.dim / (self.dim - 2))
|
168 |
+
inv_freq = 1.0 / (
|
169 |
+
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
170 |
+
)
|
171 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
172 |
+
|
173 |
+
t = torch.arange(
|
174 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
175 |
)
|
176 |
|
177 |
+
freqs = torch.outer(t, self.inv_freq)
|
178 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
179 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
180 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
181 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
182 |
+
|
183 |
+
|
184 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
185 |
+
def rotate_half(x):
|
186 |
+
"""Rotates half the hidden dims of the input."""
|
187 |
+
x1 = x[..., : x.shape[-1] // 2]
|
188 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
189 |
+
return torch.cat((-x2, x1), dim=-1)
|
190 |
+
|
191 |
+
|
192 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
193 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
194 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
q (`torch.Tensor`): The query tensor.
|
198 |
+
k (`torch.Tensor`): The key tensor.
|
199 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
200 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
201 |
+
position_ids (`torch.Tensor`):
|
202 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
203 |
+
used to pass offsetted position ids when working with a KV-cache.
|
204 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
205 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
206 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
207 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
208 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
209 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
210 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
211 |
+
Returns:
|
212 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
213 |
+
"""
|
214 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
215 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
216 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
217 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
218 |
+
return q_embed, k_embed
|
219 |
+
|
220 |
+
|
221 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Phi
|
222 |
+
class PhiMLP(nn.Module):
|
223 |
+
def __init__(self, config):
|
224 |
+
super().__init__()
|
225 |
+
self.config = config
|
226 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
227 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
228 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
229 |
+
|
230 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
231 |
+
hidden_states = self.fc1(hidden_states)
|
232 |
+
hidden_states = self.activation_fn(hidden_states)
|
233 |
+
hidden_states = self.fc2(hidden_states)
|
234 |
+
return hidden_states
|
235 |
+
|
236 |
+
|
237 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
|
238 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
239 |
+
"""
|
240 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
241 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
242 |
+
"""
|
243 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
244 |
+
if n_rep == 1:
|
245 |
+
return hidden_states
|
246 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
247 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
248 |
+
)
|
249 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
250 |
+
|
251 |
|
252 |
+
class PhiAttention(nn.Module):
|
253 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
254 |
|
255 |
+
def __init__(self, config: PhiConfig, layer_idx: Optional[int] = None):
|
256 |
+
super().__init__()
|
257 |
+
self.config = config
|
258 |
+
self.layer_idx = layer_idx
|
259 |
+
if layer_idx is None:
|
260 |
+
logger.warning_once(
|
261 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
262 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
263 |
+
"when creating this class."
|
264 |
+
)
|
265 |
|
266 |
+
self.attention_dropout = config.attention_dropout
|
267 |
+
self.hidden_size = config.hidden_size
|
268 |
+
self.num_heads = config.num_attention_heads
|
269 |
+
self.head_dim = self.hidden_size // self.num_heads
|
270 |
+
self.num_key_value_heads = config.num_key_value_heads
|
271 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
272 |
+
self.max_position_embeddings = config.max_position_embeddings
|
273 |
+
self.rope_theta = config.rope_theta
|
274 |
+
self.partial_rotary_factor = config.partial_rotary_factor
|
275 |
+
self.is_causal = True
|
276 |
+
|
277 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
278 |
+
raise ValueError(
|
279 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
280 |
+
f" and `num_heads`: {self.num_heads})."
|
281 |
+
)
|
282 |
+
|
283 |
+
self.Wqkv = nn.Linear(
|
284 |
+
self.hidden_size, 3 * self.num_heads * self.head_dim, bias=True
|
285 |
)
|
286 |
+
self.out_proj = nn.Linear(
|
287 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=True
|
288 |
)
|
289 |
+
|
290 |
+
self.qk_layernorm = config.qk_layernorm
|
291 |
+
if self.qk_layernorm:
|
292 |
+
self.q_layernorm = nn.LayerNorm(
|
293 |
+
config.hidden_size // self.num_heads,
|
294 |
+
eps=config.layer_norm_eps,
|
295 |
+
elementwise_affine=True,
|
296 |
+
)
|
297 |
+
self.k_layernorm = nn.LayerNorm(
|
298 |
+
config.hidden_size // self.num_heads,
|
299 |
+
eps=config.layer_norm_eps,
|
300 |
+
elementwise_affine=True,
|
301 |
+
)
|
302 |
+
|
303 |
+
self._init_rope()
|
304 |
+
|
305 |
+
def _init_rope(self):
|
306 |
+
if self.config.rope_scaling is None:
|
307 |
+
self.rotary_emb = PhiRotaryEmbedding(
|
308 |
+
int(self.partial_rotary_factor * self.head_dim),
|
309 |
+
max_position_embeddings=self.max_position_embeddings,
|
310 |
+
base=self.rope_theta,
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
scaling_type = self.config.rope_scaling["type"]
|
314 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
315 |
+
if scaling_type == "linear":
|
316 |
+
self.rotary_emb = PhiLinearScalingRotaryEmbedding(
|
317 |
+
int(self.partial_rotary_factor * self.head_dim),
|
318 |
+
max_position_embeddings=self.max_position_embeddings,
|
319 |
+
scaling_factor=scaling_factor,
|
320 |
+
base=self.rope_theta,
|
321 |
+
)
|
322 |
+
elif scaling_type == "dynamic":
|
323 |
+
self.rotary_emb = PhiDynamicNTKScalingRotaryEmbedding(
|
324 |
+
int(self.partial_rotary_factor * self.head_dim),
|
325 |
+
max_position_embeddings=self.max_position_embeddings,
|
326 |
+
scaling_factor=scaling_factor,
|
327 |
+
base=self.rope_theta,
|
328 |
+
)
|
329 |
+
else:
|
330 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
331 |
|
332 |
def forward(
|
333 |
self,
|
334 |
+
hidden_states: torch.Tensor,
|
335 |
+
attention_mask: Optional[torch.Tensor] = None,
|
336 |
+
position_ids: Optional[torch.LongTensor] = None,
|
337 |
+
past_key_value: Optional[Cache] = None,
|
338 |
+
output_attentions: bool = False,
|
339 |
+
use_cache: bool = False,
|
340 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
341 |
+
bsz, q_len, _ = hidden_states.size()
|
342 |
+
|
343 |
+
query_states, key_states, value_states = self.Wqkv(hidden_states).chunk(
|
344 |
+
3, dim=-1
|
345 |
+
)
|
346 |
+
|
347 |
+
if self.qk_layernorm:
|
348 |
+
query_states = self.q_layernorm(query_states)
|
349 |
+
key_states = self.k_layernorm(key_states)
|
350 |
+
|
351 |
+
query_states = query_states.view(
|
352 |
+
bsz, q_len, self.num_heads, self.head_dim
|
353 |
+
).transpose(1, 2)
|
354 |
+
key_states = key_states.view(
|
355 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
356 |
+
).transpose(1, 2)
|
357 |
+
value_states = value_states.view(
|
358 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
359 |
+
).transpose(1, 2)
|
360 |
+
|
361 |
+
kv_seq_len = key_states.shape[-2]
|
362 |
+
if past_key_value is not None:
|
363 |
+
if self.layer_idx is None:
|
364 |
+
raise ValueError(
|
365 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
366 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
367 |
+
"with a layer index."
|
368 |
+
)
|
369 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
370 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
371 |
+
|
372 |
+
# Partial rotary embedding
|
373 |
+
query_rot, query_pass = (
|
374 |
+
query_states[..., : self.rotary_emb.dim],
|
375 |
+
query_states[..., self.rotary_emb.dim :],
|
376 |
+
)
|
377 |
+
key_rot, key_pass = (
|
378 |
+
key_states[..., : self.rotary_emb.dim],
|
379 |
+
key_states[..., self.rotary_emb.dim :],
|
380 |
+
)
|
381 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
382 |
+
query_rot, key_rot = apply_rotary_pos_emb(
|
383 |
+
query_rot, key_rot, cos, sin, position_ids
|
384 |
+
)
|
385 |
+
|
386 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
387 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
388 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
389 |
+
|
390 |
+
if past_key_value is not None:
|
391 |
+
cache_kwargs = {
|
392 |
+
"sin": sin,
|
393 |
+
"cos": cos,
|
394 |
+
"partial_rotation_size": self.rotary_emb.dim,
|
395 |
+
}
|
396 |
+
key_states, value_states = past_key_value.update(
|
397 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
398 |
)
|
399 |
|
400 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
401 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
402 |
|
403 |
+
# Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow
|
404 |
+
attn_weights = torch.matmul(
|
405 |
+
query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3)
|
406 |
+
) / math.sqrt(self.head_dim)
|
407 |
+
|
408 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
409 |
+
raise ValueError(
|
410 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
411 |
+
f" {attn_weights.size()}"
|
412 |
)
|
413 |
|
414 |
+
if attention_mask is not None:
|
415 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
416 |
+
raise ValueError(
|
417 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
418 |
+
)
|
419 |
+
attn_weights = attn_weights + attention_mask
|
420 |
+
|
421 |
+
# upcast attention to fp32
|
422 |
+
attn_weights = nn.functional.softmax(
|
423 |
+
attn_weights, dim=-1, dtype=torch.float32
|
424 |
+
).to(value_states.dtype)
|
425 |
+
attn_weights = nn.functional.dropout(
|
426 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
427 |
+
)
|
428 |
|
429 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
|
431 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
432 |
+
raise ValueError(
|
433 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
434 |
+
f" {attn_output.size()}"
|
435 |
+
)
|
436 |
|
437 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
438 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
439 |
|
440 |
+
attn_output = self.out_proj(attn_output)
|
441 |
|
442 |
+
if not output_attentions:
|
443 |
+
attn_weights = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
|
445 |
+
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
|
448 |
+
class PhiFlashAttention2(PhiAttention):
|
449 |
+
"""
|
450 |
+
Phi flash attention module. This module inherits from `PhiAttention` as the weights of the module stays
|
451 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
452 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
453 |
+
"""
|
454 |
|
455 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
456 |
+
def __init__(self, *args, **kwargs):
|
457 |
+
super().__init__(*args, **kwargs)
|
458 |
|
459 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
460 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
461 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
462 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
|
|
|
|
|
|
463 |
|
|
|
|
|
464 |
def forward(
|
465 |
self,
|
466 |
+
hidden_states: torch.Tensor,
|
467 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
468 |
+
position_ids: Optional[torch.LongTensor] = None,
|
469 |
+
past_key_value: Optional[Cache] = None,
|
470 |
+
output_attentions: bool = False,
|
471 |
+
use_cache: bool = False,
|
472 |
+
**kwargs,
|
473 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
474 |
+
# PhiFlashAttention2 attention does not support output_attentions
|
475 |
+
|
476 |
+
output_attentions = False
|
477 |
+
|
478 |
+
bsz, q_len, _ = hidden_states.size()
|
479 |
+
|
480 |
+
query_states, key_states, value_states = self.Wqkv(hidden_states).chunk(
|
481 |
+
3, dim=-1
|
482 |
+
)
|
483 |
+
|
484 |
+
if self.qk_layernorm:
|
485 |
+
query_states = self.q_layernorm(query_states)
|
486 |
+
key_states = self.k_layernorm(key_states)
|
487 |
+
|
488 |
+
# Flash attention requires the input to have the shape
|
489 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
490 |
+
# therefore we just need to keep the original shape
|
491 |
+
query_states = query_states.view(
|
492 |
+
bsz, q_len, self.num_heads, self.head_dim
|
493 |
+
).transpose(1, 2)
|
494 |
+
key_states = key_states.view(
|
495 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
496 |
+
).transpose(1, 2)
|
497 |
+
value_states = value_states.view(
|
498 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
499 |
+
).transpose(1, 2)
|
500 |
+
|
501 |
+
kv_seq_len = key_states.shape[-2]
|
502 |
+
if past_key_value is not None:
|
503 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
504 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
505 |
+
|
506 |
+
# Partial rotary embedding
|
507 |
+
query_rot, query_pass = (
|
508 |
+
query_states[..., : self.rotary_emb.dim],
|
509 |
+
query_states[..., self.rotary_emb.dim :],
|
510 |
+
)
|
511 |
+
key_rot, key_pass = (
|
512 |
+
key_states[..., : self.rotary_emb.dim],
|
513 |
+
key_states[..., self.rotary_emb.dim :],
|
514 |
+
)
|
515 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
516 |
+
query_rot, key_rot = apply_rotary_pos_emb(
|
517 |
+
query_rot, key_rot, cos, sin, position_ids
|
518 |
+
)
|
519 |
+
|
520 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
521 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
522 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
523 |
+
|
524 |
+
if past_key_value is not None:
|
525 |
+
cache_kwargs = {
|
526 |
+
"sin": sin,
|
527 |
+
"cos": cos,
|
528 |
+
"partial_rotation_size": self.rotary_emb.dim,
|
529 |
+
}
|
530 |
+
key_states, value_states = past_key_value.update(
|
531 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
532 |
)
|
|
|
|
|
533 |
|
534 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
535 |
+
# to be able to avoid many of these transpose/reshape/view.
|
536 |
+
query_states = query_states.transpose(1, 2)
|
537 |
+
key_states = key_states.transpose(1, 2)
|
538 |
+
value_states = value_states.transpose(1, 2)
|
539 |
+
|
540 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
541 |
+
|
542 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
543 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
544 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
545 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
546 |
+
# in fp32.
|
547 |
+
|
548 |
+
if query_states.dtype == torch.float32:
|
549 |
+
if torch.is_autocast_enabled():
|
550 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
551 |
+
# Handle the case where the model is quantized
|
552 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
553 |
+
target_dtype = self.config._pre_quantization_dtype
|
554 |
+
else:
|
555 |
+
target_dtype = self.q_proj.weight.dtype
|
556 |
+
|
557 |
+
logger.warning_once(
|
558 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
559 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
560 |
+
f" {target_dtype}."
|
561 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
562 |
|
563 |
+
query_states = query_states.to(target_dtype)
|
564 |
+
key_states = key_states.to(target_dtype)
|
565 |
+
value_states = value_states.to(target_dtype)
|
566 |
+
|
567 |
+
attn_output = self._flash_attention_forward(
|
568 |
+
query_states,
|
569 |
+
key_states,
|
570 |
+
value_states,
|
571 |
+
attention_mask,
|
572 |
+
q_len,
|
573 |
+
dropout=attn_dropout,
|
574 |
+
softmax_scale=None,
|
575 |
+
)
|
576 |
|
577 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
578 |
+
attn_output = self.out_proj(attn_output)
|
|
|
579 |
|
580 |
+
if not output_attentions:
|
581 |
+
attn_weights = None
|
582 |
|
583 |
+
return attn_output, attn_weights, past_key_value
|
584 |
|
585 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
586 |
+
def _flash_attention_forward(
|
|
|
587 |
self,
|
588 |
+
query_states,
|
589 |
+
key_states,
|
590 |
+
value_states,
|
591 |
+
attention_mask,
|
592 |
+
query_length,
|
593 |
+
dropout=0.0,
|
|
|
|
|
|
|
|
|
|
|
594 |
softmax_scale=None,
|
|
|
|
|
|
|
595 |
):
|
596 |
+
"""
|
597 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
598 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
599 |
+
|
600 |
+
Args:
|
601 |
+
query_states (`torch.Tensor`):
|
602 |
+
Input query states to be passed to Flash Attention API
|
603 |
+
key_states (`torch.Tensor`):
|
604 |
+
Input key states to be passed to Flash Attention API
|
605 |
+
value_states (`torch.Tensor`):
|
606 |
+
Input value states to be passed to Flash Attention API
|
607 |
+
attention_mask (`torch.Tensor`):
|
608 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
609 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
610 |
+
dropout (`int`, *optional*):
|
611 |
+
Attention dropout
|
612 |
+
softmax_scale (`float`, *optional*):
|
613 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
614 |
+
"""
|
615 |
+
if not self._flash_attn_uses_top_left_mask:
|
616 |
+
causal = self.is_causal
|
617 |
+
else:
|
618 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
619 |
+
causal = self.is_causal and query_length != 1
|
620 |
|
621 |
+
# Contains at least one padding token in the sequence
|
622 |
+
if attention_mask is not None:
|
623 |
+
batch_size = query_states.shape[0]
|
624 |
+
(
|
625 |
+
query_states,
|
626 |
+
key_states,
|
627 |
+
value_states,
|
628 |
+
indices_q,
|
629 |
+
cu_seq_lens,
|
630 |
+
max_seq_lens,
|
631 |
+
) = self._upad_input(
|
632 |
+
query_states, key_states, value_states, attention_mask, query_length
|
633 |
)
|
634 |
|
635 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
636 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
637 |
+
|
638 |
+
attn_output_unpad = flash_attn_varlen_func(
|
639 |
+
query_states,
|
640 |
+
key_states,
|
641 |
+
value_states,
|
642 |
+
cu_seqlens_q=cu_seqlens_q,
|
643 |
+
cu_seqlens_k=cu_seqlens_k,
|
644 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
645 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
646 |
+
dropout_p=dropout,
|
647 |
+
softmax_scale=softmax_scale,
|
648 |
+
causal=causal,
|
649 |
+
)
|
650 |
|
651 |
+
attn_output = pad_input(
|
652 |
+
attn_output_unpad, indices_q, batch_size, query_length
|
653 |
+
)
|
654 |
+
else:
|
655 |
+
attn_output = flash_attn_func(
|
656 |
+
query_states,
|
657 |
+
key_states,
|
658 |
+
value_states,
|
659 |
+
dropout,
|
660 |
+
softmax_scale=softmax_scale,
|
661 |
+
causal=causal,
|
662 |
+
)
|
663 |
|
664 |
+
return attn_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
665 |
|
666 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
667 |
+
def _upad_input(
|
668 |
+
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
669 |
+
):
|
670 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
671 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
672 |
|
673 |
+
key_layer = index_first_axis(
|
674 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
675 |
+
indices_k,
|
|
|
|
|
676 |
)
|
677 |
+
value_layer = index_first_axis(
|
678 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
679 |
+
indices_k,
|
|
|
|
|
|
|
680 |
)
|
681 |
+
if query_length == kv_seq_len:
|
682 |
+
query_layer = index_first_axis(
|
683 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
684 |
+
indices_k,
|
685 |
+
)
|
686 |
+
cu_seqlens_q = cu_seqlens_k
|
687 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
688 |
+
indices_q = indices_k
|
689 |
+
elif query_length == 1:
|
690 |
+
max_seqlen_in_batch_q = 1
|
691 |
+
cu_seqlens_q = torch.arange(
|
692 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
693 |
+
) # There is a memcpy here, that is very bad.
|
694 |
+
indices_q = cu_seqlens_q[:-1]
|
695 |
+
query_layer = query_layer.squeeze(1)
|
696 |
+
else:
|
697 |
+
# The -q_len: slice assumes left padding.
|
698 |
+
attention_mask = attention_mask[:, -query_length:]
|
699 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
700 |
+
query_layer, attention_mask
|
701 |
+
)
|
702 |
|
703 |
+
return (
|
704 |
+
query_layer,
|
705 |
+
key_layer,
|
706 |
+
value_layer,
|
707 |
+
indices_q,
|
708 |
+
(cu_seqlens_q, cu_seqlens_k),
|
709 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
710 |
)
|
|
|
|
|
|
|
711 |
|
|
|
|
|
712 |
|
713 |
+
PHI_ATTENTION_CLASSES = {
|
714 |
+
"eager": PhiAttention,
|
715 |
+
"flash_attention_2": PhiFlashAttention2,
|
716 |
+
}
|
|
|
717 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
718 |
|
719 |
+
class PhiDecoderLayer(nn.Module):
|
720 |
+
def __init__(self, config: PhiConfig, layer_idx: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
721 |
super().__init__()
|
722 |
+
self.mixer = PHI_ATTENTION_CLASSES[config._attn_implementation](
|
723 |
+
config, layer_idx=layer_idx
|
724 |
+
)
|
725 |
+
self.mlp = PhiMLP(config)
|
726 |
+
self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
727 |
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
|
|
|
|
|
|
728 |
|
729 |
def forward(
|
730 |
self,
|
731 |
+
hidden_states: torch.Tensor,
|
732 |
+
attention_mask: Optional[torch.Tensor] = None,
|
733 |
+
position_ids: Optional[torch.LongTensor] = None,
|
734 |
+
output_attentions: Optional[bool] = False,
|
735 |
+
use_cache: Optional[bool] = False,
|
736 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
737 |
+
) -> Tuple[
|
738 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
739 |
+
]:
|
740 |
+
"""
|
741 |
+
Args:
|
742 |
+
hidden_states (`torch.FloatTensor`):
|
743 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
744 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
745 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
746 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
747 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
748 |
+
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
749 |
+
output_attentions (`bool`, *optional*):
|
750 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
751 |
+
returned tensors for more detail.
|
752 |
+
use_cache (`bool`, *optional*):
|
753 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
754 |
+
(see `past_key_values`).
|
755 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
756 |
+
"""
|
757 |
+
|
758 |
residual = hidden_states
|
759 |
+
|
760 |
hidden_states = self.ln(hidden_states)
|
761 |
|
762 |
+
# Self Attention
|
763 |
+
attn_outputs, self_attn_weights, present_key_value = self.mixer(
|
764 |
+
hidden_states=hidden_states,
|
765 |
attention_mask=attention_mask,
|
766 |
+
position_ids=position_ids,
|
767 |
+
past_key_value=past_key_value,
|
768 |
+
output_attentions=output_attentions,
|
769 |
+
use_cache=use_cache,
|
770 |
)
|
|
|
|
|
|
|
771 |
attn_outputs = self.resid_dropout(attn_outputs)
|
772 |
+
|
773 |
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
774 |
+
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
775 |
+
outputs = (hidden_states,)
|
776 |
|
777 |
+
if output_attentions:
|
778 |
+
outputs += (self_attn_weights,)
|
779 |
|
780 |
+
if use_cache:
|
781 |
+
outputs += (present_key_value,)
|
782 |
|
783 |
+
return outputs
|
|
|
|
|
|
|
784 |
|
|
|
|
|
785 |
|
786 |
+
class PhiPreTrainedModel(PreTrainedModel):
|
787 |
+
config_class = PhiConfig
|
788 |
+
base_model_prefix = "model"
|
789 |
+
supports_gradient_checkpointing = True
|
790 |
+
_no_split_modules = ["PhiDecoderLayer"]
|
791 |
+
_skip_keys_device_placement = "past_key_values"
|
792 |
+
_supports_flash_attn_2 = True
|
793 |
+
_supports_cache_class = True
|
794 |
+
|
795 |
+
def _init_weights(self, module):
|
796 |
+
std = self.config.initializer_range
|
797 |
+
if isinstance(module, nn.Linear):
|
798 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
799 |
+
if module.bias is not None:
|
800 |
+
module.bias.data.zero_()
|
801 |
+
elif isinstance(module, nn.Embedding):
|
802 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
803 |
+
if module.padding_idx is not None:
|
804 |
+
module.weight.data[module.padding_idx].zero_()
|
805 |
|
806 |
+
|
807 |
+
class Embedding(nn.Module):
|
808 |
+
def __init__(self, config: PhiConfig):
|
|
|
809 |
super().__init__()
|
810 |
+
self.wte = nn.Embedding(
|
811 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
812 |
+
)
|
813 |
|
814 |
+
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
815 |
+
return self.wte(input_ids)
|
|
|
|
|
|
|
|
|
816 |
|
817 |
|
818 |
+
class PhiModel(PhiPreTrainedModel):
|
819 |
+
"""
|
820 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`]
|
|
|
|
|
821 |
|
822 |
+
Args:
|
823 |
+
config: PhiConfig
|
824 |
+
"""
|
825 |
|
826 |
+
def __init__(self, config: PhiConfig):
|
827 |
+
super().__init__(config)
|
828 |
+
self.padding_idx = config.pad_token_id
|
829 |
+
self.vocab_size = config.vocab_size
|
830 |
+
|
831 |
+
self.embd = Embedding(config)
|
832 |
+
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
833 |
+
self.h = nn.ModuleList(
|
834 |
+
[
|
835 |
+
PhiDecoderLayer(config, layer_idx)
|
836 |
+
for layer_idx in range(config.num_hidden_layers)
|
837 |
+
]
|
838 |
+
)
|
839 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
840 |
+
|
841 |
+
self.gradient_checkpointing = False
|
842 |
+
# Initialize weights and apply final processing
|
843 |
+
self.post_init()
|
844 |
+
|
845 |
+
def get_input_embeddings(self):
|
846 |
+
return self.embd.wte
|
847 |
+
|
848 |
+
def set_input_embeddings(self, value):
|
849 |
+
self.embd.wte = value
|
850 |
+
|
851 |
+
def forward(
|
852 |
self,
|
853 |
input_ids: torch.LongTensor = None,
|
854 |
+
attention_mask: Optional[torch.Tensor] = None,
|
855 |
+
position_ids: Optional[torch.LongTensor] = None,
|
856 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
857 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
858 |
+
use_cache: Optional[bool] = None,
|
859 |
+
output_attentions: Optional[bool] = None,
|
860 |
+
output_hidden_states: Optional[bool] = None,
|
861 |
+
return_dict: Optional[bool] = None,
|
862 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
863 |
+
output_attentions = (
|
864 |
+
output_attentions
|
865 |
+
if output_attentions is not None
|
866 |
+
else self.config.output_attentions
|
867 |
)
|
868 |
+
output_hidden_states = (
|
869 |
+
output_hidden_states
|
870 |
+
if output_hidden_states is not None
|
871 |
+
else self.config.output_hidden_states
|
872 |
)
|
873 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
874 |
|
875 |
+
return_dict = (
|
876 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
877 |
)
|
878 |
|
879 |
+
# retrieve input_ids and inputs_embeds
|
880 |
+
if input_ids is not None and inputs_embeds is not None:
|
881 |
+
raise ValueError(
|
882 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
|
|
|
|
|
|
|
|
883 |
)
|
884 |
+
elif input_ids is not None:
|
885 |
+
batch_size, seq_length = input_ids.shape[:2]
|
886 |
+
elif inputs_embeds is not None:
|
887 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
888 |
else:
|
889 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
890 |
|
891 |
+
past_key_values_length = 0
|
|
|
|
|
|
|
|
|
892 |
|
893 |
+
if self.gradient_checkpointing and self.training:
|
894 |
+
if use_cache:
|
895 |
+
logger.warning_once(
|
896 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
897 |
+
)
|
898 |
+
use_cache = False
|
899 |
+
|
900 |
+
if use_cache:
|
901 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
902 |
+
if use_legacy_cache:
|
903 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
904 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
905 |
+
|
906 |
+
if position_ids is None:
|
907 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
908 |
+
position_ids = torch.arange(
|
909 |
+
past_key_values_length,
|
910 |
+
seq_length + past_key_values_length,
|
911 |
+
dtype=torch.long,
|
912 |
+
device=device,
|
913 |
+
)
|
914 |
+
position_ids = position_ids.unsqueeze(0)
|
915 |
|
916 |
+
if inputs_embeds is None:
|
917 |
+
inputs_embeds = self.embd(input_ids)
|
|
|
918 |
|
919 |
+
inputs_embeds = self.embed_dropout(inputs_embeds)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
920 |
|
921 |
+
# Attention mask.
|
922 |
+
if self._use_flash_attention_2:
|
923 |
+
# 2d mask is passed through the layers
|
924 |
+
attention_mask = (
|
925 |
+
attention_mask
|
926 |
+
if (attention_mask is not None and 0 in attention_mask)
|
927 |
+
else None
|
928 |
+
)
|
929 |
+
else:
|
930 |
+
# 4d mask is passed through the layers
|
931 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
932 |
+
attention_mask,
|
933 |
+
(batch_size, seq_length),
|
934 |
+
inputs_embeds,
|
935 |
+
past_key_values_length,
|
936 |
+
)
|
937 |
|
938 |
+
hidden_states = inputs_embeds
|
939 |
+
|
940 |
+
# decoder layers
|
941 |
+
all_hidden_states = () if output_hidden_states else None
|
942 |
+
all_self_attns = () if output_attentions else None
|
943 |
+
next_decoder_cache = None
|
944 |
+
|
945 |
+
for decoder_layer in self.h:
|
946 |
+
if output_hidden_states:
|
947 |
+
all_hidden_states += (hidden_states,)
|
948 |
+
|
949 |
+
if self.gradient_checkpointing and self.training:
|
950 |
+
layer_outputs = self._gradient_checkpointing_func(
|
951 |
+
decoder_layer.__call__,
|
952 |
+
hidden_states,
|
953 |
+
attention_mask,
|
954 |
+
position_ids,
|
955 |
+
past_key_values,
|
956 |
+
output_attentions,
|
957 |
+
)
|
958 |
+
else:
|
959 |
+
layer_outputs = decoder_layer(
|
960 |
+
hidden_states,
|
961 |
+
attention_mask=attention_mask,
|
962 |
+
position_ids=position_ids,
|
963 |
+
past_key_value=past_key_values,
|
964 |
+
output_attentions=output_attentions,
|
965 |
+
use_cache=use_cache,
|
966 |
+
)
|
967 |
|
968 |
+
hidden_states = layer_outputs[0]
|
969 |
+
|
970 |
+
if use_cache:
|
971 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
972 |
+
|
973 |
+
if output_attentions:
|
974 |
+
all_self_attns += (layer_outputs[1],)
|
975 |
+
|
976 |
+
# add hidden states from the last decoder layer
|
977 |
+
if output_hidden_states:
|
978 |
+
all_hidden_states += (hidden_states,)
|
979 |
+
|
980 |
+
next_cache = None
|
981 |
+
if use_cache:
|
982 |
+
next_cache = (
|
983 |
+
next_decoder_cache.to_legacy_cache()
|
984 |
+
if use_legacy_cache
|
985 |
+
else next_decoder_cache
|
986 |
+
)
|
987 |
+
if not return_dict:
|
988 |
+
return tuple(
|
989 |
+
v
|
990 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
991 |
+
if v is not None
|
992 |
)
|
993 |
+
return BaseModelOutputWithPast(
|
994 |
+
last_hidden_state=hidden_states,
|
995 |
+
past_key_values=next_cache,
|
996 |
+
hidden_states=all_hidden_states,
|
997 |
+
attentions=all_self_attns,
|
998 |
+
)
|
999 |
|
1000 |
+
|
1001 |
+
class CausalLMHead(nn.Module):
|
1002 |
+
"""Causal Language Modeling head. Simplified version."""
|
1003 |
+
|
1004 |
+
def __init__(self, config):
|
1005 |
+
super().__init__()
|
1006 |
+
self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1007 |
+
self.linear = nn.Linear(config.hidden_size, config.vocab_size)
|
1008 |
+
|
1009 |
+
def forward(self, hidden_states):
|
1010 |
+
return self.linear(self.ln(hidden_states))
|
1011 |
|
1012 |
|
1013 |
class PhiForCausalLM(PhiPreTrainedModel):
|
1014 |
+
_tied_weights_keys = ["lm_head.linear.weight"]
|
|
|
|
|
|
|
1015 |
|
1016 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi,bias=False->bias=True
|
1017 |
+
def __init__(self, config):
|
1018 |
super().__init__(config)
|
1019 |
self.transformer = PhiModel(config)
|
1020 |
+
self.vocab_size = config.vocab_size
|
1021 |
self.lm_head = CausalLMHead(config)
|
1022 |
+
|
1023 |
+
# Initialize weights and apply final processing
|
1024 |
self.post_init()
|
1025 |
|
1026 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
1027 |
+
def get_input_embeddings(self):
|
1028 |
+
return self.transformer.embd.wte
|
1029 |
+
|
1030 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
1031 |
+
def set_input_embeddings(self, value):
|
1032 |
+
self.model.embd.wte = value
|
1033 |
+
|
1034 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
1035 |
+
def get_output_embeddings(self):
|
1036 |
return self.lm_head.linear
|
1037 |
|
1038 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
1039 |
+
def set_output_embeddings(self, new_embeddings):
|
1040 |
self.lm_head.linear = new_embeddings
|
1041 |
|
1042 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
1043 |
+
def set_decoder(self, decoder):
|
1044 |
+
self.model = decoder
|
1045 |
+
|
1046 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
1047 |
+
def get_decoder(self):
|
1048 |
+
return self.model
|
1049 |
+
|
1050 |
def forward(
|
1051 |
self,
|
1052 |
input_ids: torch.LongTensor = None,
|
1053 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1054 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1055 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1056 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1057 |
labels: Optional[torch.LongTensor] = None,
|
1058 |
+
use_cache: Optional[bool] = None,
|
1059 |
+
output_attentions: Optional[bool] = None,
|
1060 |
+
output_hidden_states: Optional[bool] = None,
|
1061 |
+
return_dict: Optional[bool] = None,
|
1062 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1063 |
+
r"""
|
1064 |
+
Args:
|
1065 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1066 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1067 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1068 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1069 |
+
|
1070 |
+
Returns:
|
1071 |
+
|
1072 |
+
Example:
|
1073 |
+
|
1074 |
+
```python
|
1075 |
+
>>> from transformers import AutoTokenizer, PhiForCausalLM
|
1076 |
+
|
1077 |
+
>>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1")
|
1078 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
|
1079 |
+
|
1080 |
+
>>> prompt = "This is an example script ."
|
1081 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1082 |
+
|
1083 |
+
>>> # Generate
|
1084 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1085 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1086 |
+
'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str'
|
1087 |
+
```"""
|
1088 |
+
|
1089 |
+
output_attentions = (
|
1090 |
+
output_attentions
|
1091 |
+
if output_attentions is not None
|
1092 |
+
else self.config.output_attentions
|
1093 |
+
)
|
1094 |
+
output_hidden_states = (
|
1095 |
+
output_hidden_states
|
1096 |
+
if output_hidden_states is not None
|
1097 |
+
else self.config.output_hidden_states
|
1098 |
+
)
|
1099 |
+
return_dict = (
|
1100 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1101 |
+
)
|
1102 |
+
|
1103 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1104 |
+
outputs = self.transformer(
|
1105 |
input_ids=input_ids,
|
|
|
|
|
1106 |
attention_mask=attention_mask,
|
1107 |
+
position_ids=position_ids,
|
1108 |
+
past_key_values=past_key_values,
|
1109 |
+
inputs_embeds=inputs_embeds,
|
1110 |
+
use_cache=use_cache,
|
1111 |
+
output_attentions=output_attentions,
|
1112 |
+
output_hidden_states=output_hidden_states,
|
1113 |
+
return_dict=return_dict,
|
1114 |
)
|
1115 |
+
|
1116 |
+
hidden_states = outputs[0]
|
1117 |
+
logits = self.lm_head(hidden_states)
|
1118 |
+
logits = logits.float()
|
1119 |
+
|
1120 |
+
loss = None
|
1121 |
+
if labels is not None:
|
1122 |
+
# Shift so that tokens < n predict n
|
1123 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1124 |
+
shift_labels = labels[..., 1:].contiguous()
|
1125 |
+
# Flatten the tokens
|
1126 |
+
loss_fct = CrossEntropyLoss()
|
1127 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1128 |
+
shift_labels = shift_labels.view(-1)
|
1129 |
+
# Enable model parallelism
|
1130 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1131 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1132 |
+
|
1133 |
+
if not return_dict:
|
1134 |
+
output = (logits,) + outputs[1:]
|
1135 |
+
return (loss,) + output if loss is not None else output
|
1136 |
|
1137 |
return CausalLMOutputWithPast(
|
1138 |
+
loss=loss,
|
1139 |
+
logits=logits,
|
1140 |
+
past_key_values=outputs.past_key_values,
|
1141 |
+
hidden_states=outputs.hidden_states,
|
1142 |
+
attentions=outputs.attentions,
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
|
1146 |
+
def prepare_inputs_for_generation(
|
1147 |
+
self,
|
1148 |
+
input_ids,
|
1149 |
+
past_key_values=None,
|
1150 |
+
attention_mask=None,
|
1151 |
+
inputs_embeds=None,
|
1152 |
+
**kwargs,
|
1153 |
+
):
|
1154 |
+
if past_key_values is not None:
|
1155 |
+
if isinstance(past_key_values, Cache):
|
1156 |
+
cache_length = past_key_values.get_seq_length()
|
1157 |
+
past_length = past_key_values.seen_tokens
|
1158 |
+
max_cache_length = past_key_values.get_max_length()
|
1159 |
+
else:
|
1160 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1161 |
+
max_cache_length = None
|
1162 |
+
|
1163 |
+
# Keep only the unprocessed tokens:
|
1164 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1165 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1166 |
+
# input)
|
1167 |
+
if (
|
1168 |
+
attention_mask is not None
|
1169 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
1170 |
+
):
|
1171 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1172 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1173 |
+
# input_ids based on the past_length.
|
1174 |
+
elif past_length < input_ids.shape[1]:
|
1175 |
+
input_ids = input_ids[:, past_length:]
|
1176 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1177 |
+
|
1178 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1179 |
+
if (
|
1180 |
+
max_cache_length is not None
|
1181 |
+
and attention_mask is not None
|
1182 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1183 |
+
):
|
1184 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1185 |
+
|
1186 |
+
position_ids = kwargs.get("position_ids", None)
|
1187 |
+
if attention_mask is not None and position_ids is None:
|
1188 |
+
# create position_ids on the fly for batch generation
|
1189 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1190 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1191 |
+
if past_key_values:
|
1192 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1193 |
+
|
1194 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1195 |
+
if inputs_embeds is not None and past_key_values is None:
|
1196 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1197 |
+
else:
|
1198 |
+
model_inputs = {"input_ids": input_ids}
|
1199 |
+
|
1200 |
+
model_inputs.update(
|
1201 |
+
{
|
1202 |
+
"position_ids": position_ids,
|
1203 |
+
"past_key_values": past_key_values,
|
1204 |
+
"use_cache": kwargs.get("use_cache"),
|
1205 |
+
"attention_mask": attention_mask,
|
1206 |
+
}
|
1207 |
)
|
1208 |
+
return model_inputs
|
1209 |
+
|
1210 |
+
@staticmethod
|
1211 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
|
1212 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1213 |
+
reordered_past = ()
|
1214 |
+
for layer_past in past_key_values:
|
1215 |
+
reordered_past += (
|
1216 |
+
tuple(
|
1217 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1218 |
+
for past_state in layer_past
|
1219 |
+
),
|
1220 |
+
)
|
1221 |
+
return reordered_past
|