viklofg commited on
Commit
84b1380
·
1 Parent(s): 0f64611

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -6
README.md CHANGED
@@ -12,17 +12,21 @@ widget:
12
  example_title: "Long-s piano ad"
13
  ---
14
 
15
- (Work in progress)
16
-
17
  # Swedish OCR correction
18
 
19
  <!-- Provide a quick summary of what the model is/does. -->
20
 
21
  This model corrects OCR errors in Swedish text.
22
 
 
 
 
 
23
  ## Model Description
24
 
25
- This model is a fine-tuned version of [byt5-small](https://huggingface.co/google/byt5-small), a character-level multilingual transformer. It is fine-tuned on OCR samples from Swedish 19th and 20th century newspapers and historical text.
 
 
26
 
27
  <!-- ### Model Description-->
28
 
@@ -42,6 +46,7 @@ This model is a fine-tuned version of [byt5-small](https://huggingface.co/google
42
  - **Paper [optional]:** [More Information Needed]
43
  - **Demo [optional]:** [More Information Needed]-->
44
 
 
45
  ## Training Data
46
 
47
  The base model byt5 is pre-trained on [mc4](https://huggingface.co/datasets/mc4). This fine-tuned version is further trained on:
@@ -49,11 +54,24 @@ The base model byt5 is pre-trained on [mc4](https://huggingface.co/datasets/mc4)
49
  - Swedish newspapers from 1818 to 2018. Parts of the dataset are available from Språkbanken Text: [Swedish newspapers 1818-1870](https://spraakbanken.gu.se/en/resources/svenska-tidningar-1818-1870), [Swedish newspapers 1871-1906](https://spraakbanken.gu.se/resurser/svenska-tidningar-1871-1906).
50
  - Swedish blackletter documents from 1626 to 1816, available from Språkbaknen Text: [Swedish fraktur 1626-1816](https://spraakbanken.gu.se/resurser/svensk-fraktur-1626-1816)
51
 
52
- This data includes characters not used in Swedish today, such as the long s (ſ) and the esszett ligature (ß).
 
53
 
54
  ## Usage
55
- The model accepts input sequences of at most 128 UTF-8 bytes, longer sequences are truncated to this limit. 128 UTF-8 bytes corresponds to slightly less than 128 characters of Swedish text, since most characters use one byte but Å, Ä and Ö use two bytes.
 
 
 
 
 
 
 
56
 
57
- [Demo code here]
 
 
 
58
 
 
 
59
 
 
12
  example_title: "Long-s piano ad"
13
  ---
14
 
 
 
15
  # Swedish OCR correction
16
 
17
  <!-- Provide a quick summary of what the model is/does. -->
18
 
19
  This model corrects OCR errors in Swedish text.
20
 
21
+ ## Try it!
22
+ - On short texts in the inference widget to the right ->
23
+ - On files or longer texts in the [demo](https://huggingface.co/spaces/viklofg/swedish-ocr-correction-demo)
24
+
25
  ## Model Description
26
 
27
+ This model is a fine-tuned version of [byt5-small](https://huggingface.co/google/byt5-small), a character-level multilingual transformer.
28
+ The fine-tuning data consists of OCR samples from Swedish newspapers and historical documents.
29
+ The model works on texts up to 128 UTF-8 bytes (see [Length limit](#length-limit)).
30
 
31
  <!-- ### Model Description-->
32
 
 
46
  - **Paper [optional]:** [More Information Needed]
47
  - **Demo [optional]:** [More Information Needed]-->
48
 
49
+
50
  ## Training Data
51
 
52
  The base model byt5 is pre-trained on [mc4](https://huggingface.co/datasets/mc4). This fine-tuned version is further trained on:
 
54
  - Swedish newspapers from 1818 to 2018. Parts of the dataset are available from Språkbanken Text: [Swedish newspapers 1818-1870](https://spraakbanken.gu.se/en/resources/svenska-tidningar-1818-1870), [Swedish newspapers 1871-1906](https://spraakbanken.gu.se/resurser/svenska-tidningar-1871-1906).
55
  - Swedish blackletter documents from 1626 to 1816, available from Språkbaknen Text: [Swedish fraktur 1626-1816](https://spraakbanken.gu.se/resurser/svensk-fraktur-1626-1816)
56
 
57
+ This data includes characters not used in Swedish today, such as the long s (ſ) and the esszett ligature (ß), which means that the model should be able to handle texts with these characters.
58
+ See for example the example titled _Long-s piano ad_ in the inference widget to the right.
59
 
60
  ## Usage
61
+ Use the code below to get started with the model.
62
+
63
+ ```python
64
+ from transformers import pipeline, T5ForConditionalGeneration, AutoTokenizer
65
+
66
+ model = T5ForConditionalGeneration.from_pretrained('viklofg/swedish-ocr-correction')
67
+ tokenizer = AutoTokenizer.from_pretrained('google/byt5-small')
68
+ pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer)
69
 
70
+ ocr = 'Den i HandelstidniDgens g&rdagsnnmmer omtalade hvalfisken, sorn fångats i Frölnndaviken'
71
+ output = pipe(ocr)
72
+ print(output)
73
+ ```
74
 
75
+ ### Length limit
76
+ The model accepts input sequences of at most 128 UTF-8 bytes, longer sequences are truncated to this limit. 128 UTF-8 bytes corresponds to slightly less than 128 characters of Swedish text since most characters are encoded as one byte, but non-ASCII characters such as Å, Ä, and Ö are encoded as two (or more) bytes.
77