File size: 2,121 Bytes
64ab341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-finetuned-laws_articles
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large-cnn-finetuned-laws_articles

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1271
- Rouge1: 36.7269
- Rouge2: 16.9683
- Rougel: 27.0421
- Rougelsum: 28.4193

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| No log        | 1.0   | 86   | 2.0321          | 36.6897 | 16.3485 | 27.3189 | 27.9101   |
| No log        | 1.99  | 172  | 1.9454          | 38.9231 | 18.8033 | 29.5893 | 30.6478   |
| No log        | 3.0   | 259  | 1.9194          | 39.8043 | 19.5213 | 29.9679 | 31.526    |
| No log        | 3.99  | 345  | 1.9581          | 38.7543 | 18.0651 | 28.0544 | 29.5525   |
| No log        | 4.99  | 431  | 2.0134          | 36.5099 | 17.177  | 27.2934 | 28.4522   |
| 1.5279        | 6.0   | 518  | 2.1271          | 36.7269 | 16.9683 | 27.0421 | 28.4193   |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.7
- Tokenizers 0.14.1