|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Tokenization classes for BERTweet""" |
|
|
|
import os |
|
from collections import defaultdict |
|
from shutil import copyfile |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
from transformers.tokenization_utils_base import EncodingFast |
|
|
|
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast |
|
from transformers.utils import logging |
|
from .tokenization_bertweet import BertweetTokenizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = { |
|
"vocab_file": "vocab.txt", |
|
"merges_file": "bpe.codes", |
|
"tokenizer_file": "tokenizer.json", |
|
} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/vocab.txt", |
|
}, |
|
"merges_file": { |
|
"vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/bpe.codes", |
|
}, |
|
"tokenizer_file": { |
|
"vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/tokenizer.json", |
|
}, |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"vinai/bertweet-base": 128, |
|
} |
|
|
|
|
|
class BertweetTokenizerFast(PreTrainedTokenizerFast): |
|
""" |
|
Construct a "Fast" BPE tokenizer for BERTweet (backed by HuggingFace's *tokenizers* library). |
|
|
|
Peculiarities: |
|
|
|
- uses BERT's pre-tokenizer: BertPreTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of |
|
a punctuation character will be treated separately. |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the methods. Users should refer to the |
|
superclass for more information regarding methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
merges_file (`str`): |
|
Path to the merges file. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
slow_tokenizer_class = BertweetTokenizer |
|
|
|
def __init__( |
|
self, |
|
vocab_file=None, |
|
merges_file=None, |
|
tokenizer_file=None, |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
sep_token="</s>", |
|
cls_token="<s>", |
|
unk_token="<unk>", |
|
pad_token="<pad>", |
|
mask_token="<mask>", |
|
**kwargs |
|
): |
|
super().__init__( |
|
vocab_file, |
|
merges_file, |
|
tokenizer_file=tokenizer_file, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
sep_token=sep_token, |
|
cls_token=cls_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
mask_token=mask_token, |
|
**kwargs, |
|
) |
|
|
|
self.vocab_file = vocab_file |
|
self.merges_file = merges_file |
|
self.can_save_slow_tokenizer = False if not self.vocab_file else True |
|
|
|
def get_added_vocab_hacking(self): |
|
""" |
|
Returns the added tokens in the vocabulary as a dictionary of token to index. |
|
|
|
Returns: |
|
`Dict[str, int], Dict[int, int]`: The added tokens, and their original and new ids |
|
""" |
|
base_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=False) |
|
full_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=True) |
|
if full_vocab_size == base_vocab_size: |
|
return {}, {} |
|
|
|
|
|
added_vocab = dict( |
|
(self._tokenizer.id_to_token(index), index + 1 - base_vocab_size + self.mask_token_id) |
|
for index in range(base_vocab_size, full_vocab_size) |
|
) |
|
|
|
id_mapping = dict((index, self._tokenizer.token_to_id(tok)) for tok, index in added_vocab.items()) |
|
|
|
return added_vocab, id_mapping |
|
|
|
def _decode( |
|
self, |
|
token_ids: Union[int, List[int]], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = True, |
|
**kwargs |
|
) -> str: |
|
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) |
|
|
|
if isinstance(token_ids, int): |
|
token_ids = [token_ids] |
|
|
|
|
|
_, id_mapping = self.get_added_vocab_hacking() |
|
if len(id_mapping) > 0: |
|
token_ids = [id_mapping[id] if id in id_mapping else id for id in token_ids] |
|
|
|
text = self._tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens) |
|
|
|
if clean_up_tokenization_spaces: |
|
clean_text = self.clean_up_tokenization(text) |
|
return clean_text |
|
else: |
|
return text |
|
|
|
def _convert_encoding( |
|
self, |
|
encoding: EncodingFast, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
) -> Tuple[Dict[str, Any], List[EncodingFast]]: |
|
""" |
|
Convert the encoding representation (from low-level HuggingFace tokenizer output) to a python Dict and a list |
|
of encodings, take care of building a batch from overflowing tokens. |
|
|
|
Overflowing tokens are converted to additional examples (like batches) so the output values of the dict are |
|
lists (overflows) of lists (tokens). |
|
|
|
Output shape: (overflows, sequence length) |
|
""" |
|
if return_token_type_ids is None: |
|
return_token_type_ids = "token_type_ids" in self.model_input_names |
|
if return_attention_mask is None: |
|
return_attention_mask = "attention_mask" in self.model_input_names |
|
|
|
if return_overflowing_tokens and encoding.overflowing is not None: |
|
encodings = [encoding] + encoding.overflowing |
|
else: |
|
encodings = [encoding] |
|
|
|
encoding_dict = defaultdict(list) |
|
added_vocab, _ = self.get_added_vocab_hacking() |
|
for e in encodings: |
|
|
|
|
|
ids = [] |
|
for id, token in zip(e.ids, e.tokens): |
|
if id <= self.mask_token_id: |
|
ids.append(id) |
|
else: |
|
if token.strip() in added_vocab: |
|
ids.append(added_vocab[token.strip()]) |
|
else: |
|
ids.append(self.unk_token_id) |
|
|
|
encoding_dict["input_ids"].append(ids) |
|
|
|
if return_token_type_ids: |
|
encoding_dict["token_type_ids"].append(e.type_ids) |
|
if return_attention_mask: |
|
encoding_dict["attention_mask"].append(e.attention_mask) |
|
if return_special_tokens_mask: |
|
encoding_dict["special_tokens_mask"].append(e.special_tokens_mask) |
|
if return_offsets_mapping: |
|
encoding_dict["offset_mapping"].append(e.offsets) |
|
if return_length: |
|
|
|
encoding_dict["length"].append(len(ids)) |
|
|
|
return encoding_dict, encodings |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A BERTweet sequence has the following format: |
|
|
|
- single sequence: `<s> X </s>` |
|
- pair of sequences: `<s> A </s></s> B </s>` |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
|
|
if token_ids_1 is None: |
|
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
sep = [self.sep_token_id] |
|
return cls + token_ids_0 + sep + sep + token_ids_1 + sep |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
|
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
if token_ids_1 is None: |
|
return [1] + ([0] * len(token_ids_0)) + [1] |
|
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BERTweet does |
|
not make use of token type ids, therefore a list of zeros is returned. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of zeros. |
|
|
|
""" |
|
|
|
sep = [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
|
|
if token_ids_1 is None: |
|
return len(cls + token_ids_0 + sep) * [0] |
|
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if not self.can_save_slow_tokenizer: |
|
raise ValueError( |
|
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " |
|
"tokenizer." |
|
) |
|
|
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory.") |
|
return |
|
|
|
out_vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
|
|
out_merges_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] |
|
) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
|
|
if os.path.abspath(self.merges_file) != os.path.abspath(out_merges_file): |
|
copyfile(self.merges_file, out_merges_file) |
|
|
|
return (out_vocab_file, out_merges_file) |
|
|