Update README.md
Browse files
README.md
CHANGED
@@ -26,62 +26,3 @@ For further information or requests, please go to [BERTweet's homepage](https://
|
|
26 |
<img width="275" alt="irony" src="https://user-images.githubusercontent.com/2412555/135724595-15f4f2c8-bbb6-4ee6-82a0-034769dec183.png" />
|
27 |
</p>
|
28 |
|
29 |
-
### <a name="models2"></a> Pre-trained models
|
30 |
-
|
31 |
-
|
32 |
-
Model | #params | Arch. | Pre-training data
|
33 |
-
---|---|---|---
|
34 |
-
`vinai/bertweet-base` | 135M | base | 850M English Tweets (cased)
|
35 |
-
`vinai/bertweet-covid19-base-cased` | 135M | base | 23M COVID-19 English Tweets (cased)
|
36 |
-
`vinai/bertweet-covid19-base-uncased` | 135M | base | 23M COVID-19 English Tweets (uncased)
|
37 |
-
`vinai/bertweet-large` | 355M | large | 873M English Tweets (cased)
|
38 |
-
|
39 |
-
### <a name="usage2"></a> Example usage
|
40 |
-
|
41 |
-
|
42 |
-
```python
|
43 |
-
import torch
|
44 |
-
from transformers import AutoModel, AutoTokenizer
|
45 |
-
|
46 |
-
bertweet = AutoModel.from_pretrained("vinai/bertweet-base")
|
47 |
-
|
48 |
-
# For transformers v4.x+:
|
49 |
-
tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", use_fast=False)
|
50 |
-
|
51 |
-
# For transformers v3.x:
|
52 |
-
# tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base")
|
53 |
-
|
54 |
-
# INPUT TWEET IS ALREADY NORMALIZED!
|
55 |
-
line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :crying_face:"
|
56 |
-
|
57 |
-
input_ids = torch.tensor([tokenizer.encode(line)])
|
58 |
-
|
59 |
-
with torch.no_grad():
|
60 |
-
features = bertweet(input_ids) # Models outputs are now tuples
|
61 |
-
|
62 |
-
## With TensorFlow 2.0+:
|
63 |
-
# from transformers import TFAutoModel
|
64 |
-
# bertweet = TFAutoModel.from_pretrained("vinai/bertweet-base")
|
65 |
-
```
|
66 |
-
|
67 |
-
### <a name="preprocess"></a> Normalize raw input Tweets
|
68 |
-
|
69 |
-
Before applying `fastBPE` to the pre-training corpus of 850M English Tweets, we tokenized these Tweets using `TweetTokenizer` from the NLTK toolkit and used the `emoji` package to translate emotion icons into text strings (here, each icon is referred to as a word token). We also normalized the Tweets by converting user mentions and web/url links into special tokens `@USER` and `HTTPURL`, respectively. Thus it is recommended to also apply the same pre-processing step for BERTweet-based downstream applications w.r.t. the raw input Tweets. BERTweet provides this pre-processing step by enabling the `normalization` argument. This argument currently only supports models "`vinai/bertweet-base`", "`vinai/bertweet-covid19-base-cased`" and "`vinai/bertweet-covid19-base-uncased`".
|
70 |
-
|
71 |
-
- Install `emoji`: `pip3 install emoji==0.6.0`
|
72 |
-
- The `emoji` version must be either 0.5.4 or 0.6.0. Newer `emoji` versions have been updated to newer versions of the Emoji Charts, thus not consistent with the one used for pre-processing our pre-training Tweet corpus.
|
73 |
-
|
74 |
-
```python
|
75 |
-
import torch
|
76 |
-
from transformers import AutoTokenizer
|
77 |
-
|
78 |
-
# Load the AutoTokenizer with a normalization mode if the input Tweet is raw
|
79 |
-
tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", normalization=True)
|
80 |
-
|
81 |
-
# from transformers import BertweetTokenizer
|
82 |
-
# tokenizer = BertweetTokenizer.from_pretrained("vinai/bertweet-base", normalization=True)
|
83 |
-
|
84 |
-
line = "SC has first two presumptive cases of coronavirus, DHEC confirms https://postandcourier.com/health/covid19/sc-has-first-two-presumptive-cases-of-coronavirus-dhec-confirms/article_bddfe4ae-5fd3-11ea-9ce4-5f495366cee6.html?utm_medium=social&utm_source=twitter&utm_campaign=user-share… via @postandcourier"
|
85 |
-
|
86 |
-
input_ids = torch.tensor([tokenizer.encode(line)])
|
87 |
-
```
|
|
|
26 |
<img width="275" alt="irony" src="https://user-images.githubusercontent.com/2412555/135724595-15f4f2c8-bbb6-4ee6-82a0-034769dec183.png" />
|
27 |
</p>
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|