File size: 15,656 Bytes
81852aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
base_model: ProsusAI/finbert
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: finBert_SA_20e
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finBert_SA_20e

This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3343
- Accuracy: 0.8882
- F1: 0.8878
- Precision: 0.8875
- Recall: 0.8889

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.2897        | 0.1323  | 50   | 0.5582          | 0.7846   | 0.7828 | 0.7861    | 0.7858 |
| 0.5094        | 0.2646  | 100  | 0.4590          | 0.8304   | 0.8249 | 0.8329    | 0.8315 |
| 0.4218        | 0.3968  | 150  | 0.4386          | 0.8467   | 0.8441 | 0.8473    | 0.8476 |
| 0.3986        | 0.5291  | 200  | 0.3985          | 0.8508   | 0.8487 | 0.8505    | 0.8516 |
| 0.3866        | 0.6614  | 250  | 0.3847          | 0.8553   | 0.8563 | 0.8584    | 0.8554 |
| 0.391         | 0.7937  | 300  | 0.3528          | 0.8707   | 0.8703 | 0.8699    | 0.8713 |
| 0.3739        | 0.9259  | 350  | 0.3515          | 0.8697   | 0.8691 | 0.8688    | 0.8702 |
| 0.3499        | 1.0582  | 400  | 0.3539          | 0.8656   | 0.8670 | 0.8696    | 0.8659 |
| 0.3211        | 1.1905  | 450  | 0.3659          | 0.8728   | 0.8719 | 0.8718    | 0.8734 |
| 0.312         | 1.3228  | 500  | 0.3514          | 0.8726   | 0.8721 | 0.8722    | 0.8730 |
| 0.3001        | 1.4550  | 550  | 0.3325          | 0.8738   | 0.8749 | 0.8765    | 0.8741 |
| 0.2968        | 1.5873  | 600  | 0.3355          | 0.8756   | 0.8751 | 0.8752    | 0.8761 |
| 0.2893        | 1.7196  | 650  | 0.3639          | 0.8718   | 0.8700 | 0.8717    | 0.8725 |
| 0.3084        | 1.8519  | 700  | 0.3285          | 0.8817   | 0.8812 | 0.8810    | 0.8822 |
| 0.2838        | 1.9841  | 750  | 0.3390          | 0.8833   | 0.8833 | 0.8832    | 0.8838 |
| 0.21          | 2.1164  | 800  | 0.3772          | 0.8809   | 0.8808 | 0.8810    | 0.8815 |
| 0.2195        | 2.2487  | 850  | 0.3524          | 0.8820   | 0.8808 | 0.8814    | 0.8827 |
| 0.2109        | 2.3810  | 900  | 0.3530          | 0.8788   | 0.8776 | 0.8785    | 0.8794 |
| 0.2131        | 2.5132  | 950  | 0.3497          | 0.8838   | 0.8843 | 0.8846    | 0.8842 |
| 0.2028        | 2.6455  | 1000 | 0.3466          | 0.8876   | 0.8872 | 0.8870    | 0.8881 |
| 0.225         | 2.7778  | 1050 | 0.3544          | 0.8786   | 0.8804 | 0.8853    | 0.8786 |
| 0.212         | 2.9101  | 1100 | 0.3528          | 0.8850   | 0.8860 | 0.8878    | 0.8851 |
| 0.1993        | 3.0423  | 1150 | 0.3674          | 0.8896   | 0.8906 | 0.8923    | 0.8898 |
| 0.1349        | 3.1746  | 1200 | 0.3870          | 0.8904   | 0.8906 | 0.8906    | 0.8908 |
| 0.1371        | 3.3069  | 1250 | 0.3886          | 0.8876   | 0.8865 | 0.8871    | 0.8882 |
| 0.1587        | 3.4392  | 1300 | 0.3873          | 0.8857   | 0.8843 | 0.8856    | 0.8865 |
| 0.1406        | 3.5714  | 1350 | 0.4001          | 0.8833   | 0.8839 | 0.8852    | 0.8834 |
| 0.1884        | 3.7037  | 1400 | 0.3576          | 0.8861   | 0.8867 | 0.8875    | 0.8864 |
| 0.1539        | 3.8360  | 1450 | 0.3761          | 0.8927   | 0.8919 | 0.8922    | 0.8933 |
| 0.1426        | 3.9683  | 1500 | 0.3774          | 0.8902   | 0.8908 | 0.8917    | 0.8905 |
| 0.106         | 4.1005  | 1550 | 0.4692          | 0.8823   | 0.8836 | 0.8867    | 0.8825 |
| 0.0955        | 4.2328  | 1600 | 0.4351          | 0.8891   | 0.8891 | 0.8890    | 0.8894 |
| 0.1062        | 4.3651  | 1650 | 0.4300          | 0.8896   | 0.8889 | 0.8891    | 0.8901 |
| 0.1204        | 4.4974  | 1700 | 0.4308          | 0.8872   | 0.8862 | 0.8865    | 0.8878 |
| 0.0932        | 4.6296  | 1750 | 0.4403          | 0.8902   | 0.8905 | 0.8905    | 0.8906 |
| 0.1163        | 4.7619  | 1800 | 0.4199          | 0.8961   | 0.8954 | 0.8957    | 0.8966 |
| 0.1225        | 4.8942  | 1850 | 0.4211          | 0.8855   | 0.8844 | 0.8851    | 0.8861 |
| 0.1087        | 5.0265  | 1900 | 0.4421          | 0.8927   | 0.8929 | 0.8928    | 0.8931 |
| 0.0693        | 5.1587  | 1950 | 0.5357          | 0.8842   | 0.8847 | 0.8857    | 0.8843 |
| 0.0727        | 5.2910  | 2000 | 0.5088          | 0.8864   | 0.8862 | 0.8867    | 0.8867 |
| 0.0874        | 5.4233  | 2050 | 0.4516          | 0.8940   | 0.8943 | 0.8943    | 0.8943 |
| 0.0707        | 5.5556  | 2100 | 0.4983          | 0.8934   | 0.8935 | 0.8933    | 0.8938 |
| 0.0745        | 5.6878  | 2150 | 0.4946          | 0.8901   | 0.8903 | 0.8902    | 0.8905 |
| 0.0706        | 5.8201  | 2200 | 0.5088          | 0.8964   | 0.8958 | 0.8960    | 0.8970 |
| 0.0935        | 5.9524  | 2250 | 0.4664          | 0.8923   | 0.8917 | 0.8917    | 0.8927 |
| 0.0649        | 6.0847  | 2300 | 0.5200          | 0.8896   | 0.8899 | 0.8902    | 0.8897 |
| 0.0528        | 6.2169  | 2350 | 0.5412          | 0.8937   | 0.8941 | 0.8944    | 0.8939 |
| 0.0638        | 6.3492  | 2400 | 0.5140          | 0.8968   | 0.8962 | 0.8964    | 0.8973 |
| 0.0639        | 6.4815  | 2450 | 0.5087          | 0.8960   | 0.8957 | 0.8955    | 0.8964 |
| 0.0597        | 6.6138  | 2500 | 0.5272          | 0.8958   | 0.8951 | 0.8952    | 0.8963 |
| 0.0507        | 6.7460  | 2550 | 0.5685          | 0.8958   | 0.8950 | 0.8958    | 0.8965 |
| 0.062         | 6.8783  | 2600 | 0.5272          | 0.8944   | 0.8942 | 0.8940    | 0.8949 |
| 0.0604        | 7.0106  | 2650 | 0.5083          | 0.8988   | 0.8990 | 0.8989    | 0.8991 |
| 0.044         | 7.1429  | 2700 | 0.5663          | 0.8951   | 0.8959 | 0.8973    | 0.8953 |
| 0.0471        | 7.2751  | 2750 | 0.5610          | 0.8963   | 0.8964 | 0.8963    | 0.8967 |
| 0.0526        | 7.4074  | 2800 | 0.5725          | 0.8930   | 0.8937 | 0.8944    | 0.8932 |
| 0.0487        | 7.5397  | 2850 | 0.5943          | 0.8982   | 0.8981 | 0.8982    | 0.8986 |
| 0.0548        | 7.6720  | 2900 | 0.5556          | 0.9001   | 0.9003 | 0.9004    | 0.9004 |
| 0.0461        | 7.8042  | 2950 | 0.5452          | 0.9007   | 0.9004 | 0.9003    | 0.9011 |
| 0.041         | 7.9365  | 3000 | 0.5505          | 0.8978   | 0.8971 | 0.8974    | 0.8984 |
| 0.0388        | 8.0688  | 3050 | 0.6078          | 0.8981   | 0.8971 | 0.8980    | 0.8987 |
| 0.0318        | 8.2011  | 3100 | 0.6324          | 0.8947   | 0.8950 | 0.8953    | 0.8949 |
| 0.033         | 8.3333  | 3150 | 0.6211          | 0.8953   | 0.8956 | 0.8957    | 0.8956 |
| 0.0459        | 8.4656  | 3200 | 0.6161          | 0.8988   | 0.8990 | 0.8992    | 0.8992 |
| 0.0462        | 8.5979  | 3250 | 0.5925          | 0.8953   | 0.8954 | 0.8952    | 0.8956 |
| 0.0321        | 8.7302  | 3300 | 0.6416          | 0.8920   | 0.8914 | 0.8916    | 0.8925 |
| 0.0452        | 8.8624  | 3350 | 0.5777          | 0.8968   | 0.8967 | 0.8966    | 0.8972 |
| 0.0468        | 8.9947  | 3400 | 0.5743          | 0.8959   | 0.8964 | 0.8970    | 0.8962 |
| 0.0294        | 9.1270  | 3450 | 0.5977          | 0.8996   | 0.8992 | 0.8991    | 0.9000 |
| 0.0373        | 9.2593  | 3500 | 0.6051          | 0.8935   | 0.8944 | 0.8959    | 0.8937 |
| 0.035         | 9.3915  | 3550 | 0.6218          | 0.8986   | 0.8983 | 0.8982    | 0.8990 |
| 0.0304        | 9.5238  | 3600 | 0.6784          | 0.8926   | 0.8931 | 0.8938    | 0.8927 |
| 0.0464        | 9.6561  | 3650 | 0.6534          | 0.8968   | 0.8954 | 0.8973    | 0.8974 |
| 0.031         | 9.7884  | 3700 | 0.5966          | 0.8987   | 0.8986 | 0.8984    | 0.8990 |
| 0.0252        | 9.9206  | 3750 | 0.6065          | 0.8991   | 0.8988 | 0.8986    | 0.8994 |
| 0.0385        | 10.0529 | 3800 | 0.6120          | 0.8953   | 0.8945 | 0.8948    | 0.8958 |
| 0.0141        | 10.1852 | 3850 | 0.6305          | 0.8967   | 0.8971 | 0.8975    | 0.8969 |
| 0.0325        | 10.3175 | 3900 | 0.6163          | 0.9006   | 0.9002 | 0.9001    | 0.9010 |
| 0.0188        | 10.4497 | 3950 | 0.6286          | 0.9005   | 0.9002 | 0.9000    | 0.9009 |
| 0.0153        | 10.5820 | 4000 | 0.6769          | 0.8985   | 0.8988 | 0.8989    | 0.8987 |
| 0.03          | 10.7143 | 4050 | 0.6473          | 0.8970   | 0.8969 | 0.8969    | 0.8973 |
| 0.0286        | 10.8466 | 4100 | 0.6644          | 0.8991   | 0.8993 | 0.8994    | 0.8993 |
| 0.0311        | 10.9788 | 4150 | 0.6566          | 0.8989   | 0.8992 | 0.8994    | 0.8992 |
| 0.024         | 11.1111 | 4200 | 0.6562          | 0.9007   | 0.9011 | 0.9016    | 0.9010 |
| 0.0241        | 11.2434 | 4250 | 0.6290          | 0.9007   | 0.9008 | 0.9007    | 0.9011 |
| 0.0094        | 11.3757 | 4300 | 0.6739          | 0.9019   | 0.9015 | 0.9015    | 0.9023 |
| 0.0184        | 11.5079 | 4350 | 0.6819          | 0.8992   | 0.8994 | 0.8994    | 0.8995 |
| 0.017         | 11.6402 | 4400 | 0.6907          | 0.9037   | 0.9034 | 0.9033    | 0.9041 |
| 0.0275        | 11.7725 | 4450 | 0.6652          | 0.8983   | 0.8985 | 0.8984    | 0.8986 |
| 0.0138        | 11.9048 | 4500 | 0.6829          | 0.9013   | 0.9009 | 0.9008    | 0.9017 |
| 0.0173        | 12.0370 | 4550 | 0.6910          | 0.9016   | 0.9014 | 0.9012    | 0.9019 |
| 0.0129        | 12.1693 | 4600 | 0.7063          | 0.9018   | 0.9018 | 0.9017    | 0.9022 |
| 0.0173        | 12.3016 | 4650 | 0.7244          | 0.9015   | 0.9011 | 0.9011    | 0.9019 |
| 0.0223        | 12.4339 | 4700 | 0.7097          | 0.9013   | 0.9012 | 0.9010    | 0.9017 |
| 0.0179        | 12.5661 | 4750 | 0.7458          | 0.8967   | 0.8964 | 0.8963    | 0.8970 |
| 0.0162        | 12.6984 | 4800 | 0.7249          | 0.8987   | 0.8989 | 0.8988    | 0.8990 |
| 0.0144        | 12.8307 | 4850 | 0.7354          | 0.8990   | 0.8990 | 0.8987    | 0.8993 |
| 0.0189        | 12.9630 | 4900 | 0.7119          | 0.8999   | 0.8996 | 0.8994    | 0.9003 |
| 0.0097        | 13.0952 | 4950 | 0.7425          | 0.9012   | 0.9011 | 0.9009    | 0.9016 |
| 0.0122        | 13.2275 | 5000 | 0.7447          | 0.8991   | 0.8990 | 0.8990    | 0.8995 |
| 0.0171        | 13.3598 | 5050 | 0.7508          | 0.8980   | 0.8983 | 0.8986    | 0.8981 |
| 0.013         | 13.4921 | 5100 | 0.7380          | 0.9015   | 0.9016 | 0.9014    | 0.9017 |
| 0.0141        | 13.6243 | 5150 | 0.7380          | 0.9025   | 0.9026 | 0.9024    | 0.9028 |
| 0.0092        | 13.7566 | 5200 | 0.7636          | 0.8987   | 0.8992 | 0.8998    | 0.8989 |
| 0.0151        | 13.8889 | 5250 | 0.7474          | 0.9004   | 0.9008 | 0.9009    | 0.9006 |
| 0.0064        | 14.0212 | 5300 | 0.7812          | 0.8989   | 0.8992 | 0.8993    | 0.8992 |
| 0.0112        | 14.1534 | 5350 | 0.7392          | 0.9025   | 0.9022 | 0.9020    | 0.9029 |
| 0.008         | 14.2857 | 5400 | 0.7737          | 0.9035   | 0.9029 | 0.9034    | 0.9041 |
| 0.0042        | 14.4180 | 5450 | 0.7880          | 0.9012   | 0.9013 | 0.9012    | 0.9015 |
| 0.0084        | 14.5503 | 5500 | 0.7928          | 0.9025   | 0.9025 | 0.9023    | 0.9028 |
| 0.0054        | 14.6825 | 5550 | 0.8009          | 0.8990   | 0.8993 | 0.8993    | 0.8992 |
| 0.0099        | 14.8148 | 5600 | 0.7738          | 0.9020   | 0.9019 | 0.9017    | 0.9023 |
| 0.0087        | 14.9471 | 5650 | 0.8047          | 0.9023   | 0.9019 | 0.9021    | 0.9028 |
| 0.0136        | 15.0794 | 5700 | 0.7985          | 0.9018   | 0.9020 | 0.9020    | 0.9021 |
| 0.0048        | 15.2116 | 5750 | 0.8070          | 0.9027   | 0.9029 | 0.9030    | 0.9030 |
| 0.0083        | 15.3439 | 5800 | 0.8263          | 0.9025   | 0.9022 | 0.9026    | 0.9030 |
| 0.0038        | 15.4762 | 5850 | 0.8046          | 0.9040   | 0.9037 | 0.9036    | 0.9044 |
| 0.0098        | 15.6085 | 5900 | 0.7831          | 0.9028   | 0.9027 | 0.9025    | 0.9031 |
| 0.0107        | 15.7407 | 5950 | 0.7760          | 0.9034   | 0.9033 | 0.9031    | 0.9038 |
| 0.0099        | 15.8730 | 6000 | 0.8014          | 0.9015   | 0.9016 | 0.9016    | 0.9018 |
| 0.0087        | 16.0053 | 6050 | 0.7972          | 0.9022   | 0.9019 | 0.9018    | 0.9026 |
| 0.0034        | 16.1376 | 6100 | 0.8133          | 0.9001   | 0.9004 | 0.9006    | 0.9003 |
| 0.0063        | 16.2698 | 6150 | 0.7995          | 0.9028   | 0.9028 | 0.9026    | 0.9031 |
| 0.004         | 16.4021 | 6200 | 0.8010          | 0.9035   | 0.9033 | 0.9031    | 0.9038 |
| 0.0091        | 16.5344 | 6250 | 0.7946          | 0.9026   | 0.9023 | 0.9021    | 0.9029 |
| 0.0068        | 16.6667 | 6300 | 0.8044          | 0.9031   | 0.9032 | 0.9031    | 0.9035 |
| 0.0048        | 16.7989 | 6350 | 0.8205          | 0.9041   | 0.9038 | 0.9037    | 0.9045 |
| 0.0093        | 16.9312 | 6400 | 0.8196          | 0.9021   | 0.9020 | 0.9018    | 0.9024 |
| 0.0061        | 17.0635 | 6450 | 0.8313          | 0.9007   | 0.9009 | 0.9008    | 0.9010 |
| 0.0058        | 17.1958 | 6500 | 0.8315          | 0.9001   | 0.9003 | 0.9002    | 0.9005 |
| 0.0025        | 17.3280 | 6550 | 0.8407          | 0.9009   | 0.9010 | 0.9009    | 0.9012 |
| 0.0059        | 17.4603 | 6600 | 0.8447          | 0.8989   | 0.8992 | 0.8992    | 0.8992 |
| 0.0038        | 17.5926 | 6650 | 0.8379          | 0.9029   | 0.9027 | 0.9025    | 0.9033 |
| 0.0044        | 17.7249 | 6700 | 0.8374          | 0.9016   | 0.9017 | 0.9016    | 0.9019 |
| 0.0077        | 17.8571 | 6750 | 0.8314          | 0.9033   | 0.9029 | 0.9028    | 0.9037 |
| 0.0039        | 17.9894 | 6800 | 0.8312          | 0.9017   | 0.9013 | 0.9012    | 0.9021 |
| 0.0051        | 18.1217 | 6850 | 0.8277          | 0.9024   | 0.9021 | 0.9019    | 0.9028 |
| 0.0053        | 18.2540 | 6900 | 0.8340          | 0.9021   | 0.9021 | 0.9019    | 0.9024 |
| 0.0015        | 18.3862 | 6950 | 0.8395          | 0.9018   | 0.9018 | 0.9017    | 0.9021 |
| 0.0038        | 18.5185 | 7000 | 0.8436          | 0.9021   | 0.9022 | 0.9020    | 0.9025 |
| 0.0044        | 18.6508 | 7050 | 0.8463          | 0.9025   | 0.9023 | 0.9021    | 0.9028 |
| 0.0051        | 18.7831 | 7100 | 0.8470          | 0.9021   | 0.9020 | 0.9018    | 0.9025 |
| 0.0035        | 18.9153 | 7150 | 0.8476          | 0.9027   | 0.9027 | 0.9025    | 0.9031 |
| 0.0028        | 19.0476 | 7200 | 0.8485          | 0.9028   | 0.9027 | 0.9025    | 0.9032 |
| 0.0022        | 19.1799 | 7250 | 0.8495          | 0.9027   | 0.9027 | 0.9025    | 0.9031 |
| 0.0069        | 19.3122 | 7300 | 0.8527          | 0.9017   | 0.9019 | 0.9018    | 0.9020 |
| 0.0058        | 19.4444 | 7350 | 0.8535          | 0.9013   | 0.9015 | 0.9013    | 0.9016 |
| 0.0032        | 19.5767 | 7400 | 0.8536          | 0.9022   | 0.9022 | 0.9020    | 0.9025 |
| 0.004         | 19.7090 | 7450 | 0.8525          | 0.9023   | 0.9023 | 0.9021    | 0.9026 |
| 0.0039        | 19.8413 | 7500 | 0.8521          | 0.9021   | 0.9021 | 0.9019    | 0.9025 |
| 0.0017        | 19.9735 | 7550 | 0.8526          | 0.9024   | 0.9023 | 0.9021    | 0.9027 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.2.1+cu121
- Tokenizers 0.19.1