vishal042002 commited on
Commit
d6b6a91
·
verified ·
1 Parent(s): b3cd4ba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -0
README.md CHANGED
@@ -27,6 +27,34 @@ The model was trained on a custom dataset containing clinical surgery Q&A pairs.
27
  Open-source medical books
28
  Medical catalogs
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  This model is designed to:
31
 
32
  Answer questions about clinical surgery procedures.
 
27
  Open-source medical books
28
  Medical catalogs
29
 
30
+ Ruuning the model through Adapter Merge:
31
+
32
+ ```python
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer
34
+ from peft import PeftModel
35
+ import torch
36
+
37
+ base_model_name = "unsloth/Llama-3.2-3B-Instruct"
38
+ base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float16, device_map="auto")
39
+
40
+ adapter_path = "vishal042002/Llama3.2-3b-Instruct-ClinicalSurgery"
41
+ base_model = PeftModel.from_pretrained(base_model, adapter_path)
42
+
43
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
44
+
45
+ device = "cuda" if torch.cuda.is_available() else "cpu"
46
+ base_model.to(device)
47
+
48
+ # Sample usage
49
+ input_text = "What is the mortality rate for patients requiring surgical intervention who were unstable preoperatively?"
50
+ inputs = tokenizer(input_text, return_tensors="pt").to(device)
51
+
52
+ outputs = base_model.generate(**inputs, max_new_tokens=200, temperature=1.5, top_p=0.9)
53
+ decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
54
+
55
+ print(decoded_output)
56
+ ```
57
+
58
  This model is designed to:
59
 
60
  Answer questions about clinical surgery procedures.