File size: 3,654 Bytes
d6d35ed 304a0a4 d6d35ed 304a0a4 d6d35ed ad0de50 304a0a4 d6d35ed 304a0a4 d6d35ed 304a0a4 d6d35ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Llava.
"""
from typing import List, Optional, Union
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.tokenization_utils_base import (
PaddingStrategy,
PreTokenizedInput,
TextInput,
TruncationStrategy,
)
from transformers.utils import TensorType
import torch
from open_clip.transform import PreprocessCfg, image_transform_v2
from modeling_llava import LlavaForConditionalGeneration
class OpenCLIPImageProcessor:
def __init__(self, config):
cfg = PreprocessCfg(**config)
transform = image_transform_v2(cfg=cfg, is_train=False)
self.transform = transform
def __call__(self, image, return_tensors):
if isinstance(image, list):
outputs = []
for item in image:
outputs.append(self.transform(item))
return {
"pixel_values": torch.tensor(outputs),
}
output = self.transform(image)
return {
"pixel_values": output.unsqueeze(0),
}
@property
def model_input_names(self):
return ["pixel_values"]
class LlavaProcessor:
def __init__(self, image_processor: OpenCLIPImageProcessor, tokenizer):
self.image_processor = image_processor
self.tokenizer = tokenizer
def __call__(
self,
text: Union[
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
] = None,
images: ImageInput = None,
model: LlavaForConditionalGeneration = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
if images is not None:
pixel_values = self.image_processor(images, return_tensors=return_tensors)[
"pixel_values"
]
pixel_values = pixel_values.to(model.device).to(model.dtype)
image_outputs = model.vision_model(pixel_values)
image_features = model.multi_modal_projector(image_outputs)
else:
image_features = None
text_inputs = self.tokenizer(
text,
return_tensors=return_tensors,
padding=padding,
truncation=truncation,
max_length=max_length,
)
return BatchFeature(data={**text_inputs, "image_features": image_features})
def batch_decode(self, *args, **kwargs):
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|