File size: 5,358 Bytes
d6d35ed 304a0a4 8e8fbc1 d6d35ed 8e8fbc1 d6d35ed 8e8fbc1 d6d35ed 8e8fbc1 d6d35ed 8e8fbc1 d6d35ed 8e8fbc1 d6d35ed 304a0a4 d6d35ed 8e8fbc1 d6d35ed ad0de50 304a0a4 8e8fbc1 d6d35ed 304a0a4 d6d35ed 304a0a4 d6d35ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Llava.
"""
from typing import List, Optional, Union
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.tokenization_utils_base import (
PaddingStrategy,
PreTokenizedInput,
TextInput,
TruncationStrategy,
)
from transformers.utils import TensorType
import torch
from open_clip.transform import PreprocessCfg, image_transform_v2
from modeling_llava import LlavaForConditionalGeneration
from PIL import Image
import math
class OpenCLIPImageProcessor:
def __init__(self, config, crop_size=384, max_tokens=100):
cfg = PreprocessCfg(**config)
transform = image_transform_v2(cfg=cfg, is_train=False)
self.transform = transform
self.crop_size = crop_size
self.max_tokens = max_tokens
def __call__(self, image: Image.Image):
output = self.transform_func(image)
return {
"pixel_values": output,
}
def transform_func(self, image: Image.Image):
outputs = []
outputs.append(self.transform(image))
width, height = image.size
crop_size = self.crop_size
if width <= crop_size and height <= crop_size:
outputs = torch.stack(outputs, dim=0)
return outputs
total_tokens = math.inf
while total_tokens > self.max_tokens:
total_tokens = math.floor(
(2 * width - crop_size)
/ crop_size
* (2 * height - crop_size)
/ crop_size
)
if total_tokens > self.max_tokens:
crop_size += 10
stride = crop_size // 2
x_steps = int(round((2 * width - crop_size) / crop_size))
if x_steps < 1:
x_steps = 1
y_steps = int(round((2 * height - crop_size) / crop_size))
if y_steps < 1:
y_steps = 1
x_coords = []
y_coords = []
for i in range(x_steps):
x_coords.append([i * stride, i * stride + crop_size])
if x_coords[-1][1] != width:
x_coords[-1][1] = width
for i in range(y_steps):
y_coords.append([i * stride, i * stride + crop_size])
if y_coords[-1][1] != height:
y_coords[-1][1] = height
image_parts = []
for i in range(len(x_coords)):
for j in range(len(y_coords)):
image_parts.append(
image.crop(
(x_coords[i][0], y_coords[j][0], x_coords[i][1], y_coords[j][1])
)
)
for image_part in image_parts:
outputs.append(self.transform(image_part))
outputs = torch.stack(outputs, dim=0)
return outputs
@property
def model_input_names(self):
return ["pixel_values"]
class LlavaProcessor:
def __init__(self, image_processor: OpenCLIPImageProcessor, tokenizer):
self.image_processor = image_processor
self.tokenizer = tokenizer
def __call__(
self,
text: Union[
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
] = None,
images: ImageInput = None,
model: LlavaForConditionalGeneration = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
if images is not None:
pixel_values = self.image_processor(images)[
"pixel_values"
]
pixel_values = pixel_values.to(model.device).to(model.dtype)
image_outputs = model.vision_model(pixel_values)
image_features = model.multi_modal_projector(image_outputs)
image_features = image_features.unsqueeze(0)
else:
image_features = None
text_inputs = self.tokenizer(
text,
return_tensors=return_tensors,
padding=padding,
truncation=truncation,
max_length=max_length,
)
return BatchFeature(data={**text_inputs, "image_features": image_features})
def batch_decode(self, *args, **kwargs):
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|