File size: 4,085 Bytes
7190045 2fa03da 8965660 dbfb232 7190045 7c5d988 982c1f8 7c5d988 7190045 260330d 7190045 8965660 7190045 8965660 7190045 8965660 7190045 8965660 7190045 8965660 7190045 8965660 7190045 8965660 7190045 3f4bd65 260330d cade16e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
datasets:
- liuhaotian/LLaVA-Pretrain
- liuhaotian/LLaVA-Instruct-150K
language:
- en
tags:
- llava
- phi
license: mit
library_name: transformers
widget:
- text: "What animal is it?"
src: "https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg"
- text: "Where is it?"
src: "https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg"
---
# LLaVA-3b
<a target="_blank" href="https://colab.research.google.com/drive/1W7JQrFXwFunAY1XvS31mwC7mrXBgGD_M">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
## Model details
LLaVA-3b is a model fine-tuned from [Dolphin 2.6 Phi](https://huggingface.co/cognitivecomputations/dolphin-2_6-phi-2) in a LLaVA fashion using vision tower from
[SigLIP 400M](https://huggingface.co/timm/ViT-SO400M-14-SigLIP-384). There are a couple of things different from the original LLaVA architecture:
1. Multiple image tokens. The multimodal projector generates embeddings of shape [5, 2560] instead of [1, 2560] for images. The idea is that using more tokens
allows us to get more info from the image into the language model.
2. The model uses the output from the latest layer of the vision encoder instead of the intermediate one.
3. The context length during training was 1200 tokens, as the L4 GPUs I used didn't allow me to get more.
As Dolphin 2.6 Phi, LLaVA-3b uses ChatML prompt format:
```
<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## How to use
**Install dependencies**
```bash
!pip install -q open_clip_torch timm einops
```
**Download modeling files**
```python
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="visheratin/LLaVA-3b", filename="configuration_llava.py", local_dir="./", force_download=True)
hf_hub_download(repo_id="visheratin/LLaVA-3b", filename="configuration_phi.py", local_dir="./", force_download=True)
hf_hub_download(repo_id="visheratin/LLaVA-3b", filename="modeling_llava.py", local_dir="./", force_download=True)
hf_hub_download(repo_id="visheratin/LLaVA-3b", filename="modeling_phi.py", local_dir="./", force_download=True)
hf_hub_download(repo_id="visheratin/LLaVA-3b", filename="processing_llava.py", local_dir="./", force_download=True)
```
**Create a model**
```python
from modeling_llava import LlavaForConditionalGeneration
import torch
model = LlavaForConditionalGeneration.from_pretrained("visheratin/LLaVA-3b", torch_dtype=torch.float16)
model = model.to("cuda")
```
**Create processors**
```python
from transformers import AutoTokenizer
from processing_llava import LlavaProcessor, OpenCLIPImageProcessor
tokenizer = AutoTokenizer.from_pretrained("visheratin/LLaVA-3b")
image_processor = OpenCLIPImageProcessor(model.config.preprocess_config)
processor = LlavaProcessor(image_processor, tokenizer)
```
**Set image and text**
```python
from PIL import Image
import requests
image_file = "https://images.unsplash.com/photo-1439246854758-f686a415d9da"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
prompt = """<|im_start|>system
A chat between a curious human and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the human's questions.
The assistant does not hallucinate and pays very close attention to the details.<|im_end|>
<|im_start|>user
<image>
Describe the image.<|im_end|>
<|im_start|>assistant
"""
```
**Process inputs**
```python
inputs = processor(prompt, raw_image, model, return_tensors='pt')
inputs['input_ids'] = inputs['input_ids'].to(model.device)
inputs['attention_mask'] = inputs['attention_mask'].to(model.device)
```
**Generate the data**
```python
output = model.generate(**inputs, max_new_tokens=200, do_sample=True, top_p=0.5, temperature=1.2, eos_token_id=tokenizer.eos_token_id)
```
## Benchmarks
- TextVQA - 33.25%
- GQA - 47.15%
- VQAv2 - 63.1%
- VizWiz - 24.03%
## Acknowledgments
Thanks to [ML Collective](https://mlcollective.org/) for providing credits for computing resources. |