File size: 11,922 Bytes
cde656c ed8f61a cde656c ed8f61a cde656c ed8f61a cde656c ed8f61a cde656c ed8f61a cde656c ed8f61a cde656c ed8f61a cde656c ed8f61a cde656c ed8f61a cde656c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
# coding=utf-8
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import ModelOutput
from modeling_phi import PhiForCausalLM
from configuration_llava import LlavaConfig
from open_clip import create_model
@dataclass
class LlavaCausalLMOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_features: Optional[torch.FloatTensor] = None
class LlavaMultiModalProjector(nn.Module):
def __init__(self, config: LlavaConfig):
super().__init__()
self.linear_1 = nn.Linear(
config.vision_embed_dim,
config.text_config.n_embd * config.projector_tokens_num,
bias=True,
)
self.act = nn.GELU()
self.linear_2 = nn.Linear(
config.text_config.n_embd * config.projector_tokens_num,
config.text_config.n_embd * config.projector_tokens_num,
bias=True,
)
self.projector_tokens_num = config.projector_tokens_num
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
hidden_states = hidden_states.reshape(
hidden_states.shape[0],
self.projector_tokens_num,
int(hidden_states.shape[1] / self.projector_tokens_num),
)
return hidden_states
class LlavaPreTrainedModel(PreTrainedModel):
config_class = LlavaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["LlavaVisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
def __init__(self, config):
super().__init__(config)
def _init_weights(self, module):
return
@property
def _supports_sdpa(self):
"""
Retrieve language_model's attribute to check whether the model supports
SDPA or not.
"""
return self.language_model._supports_sdpa
class LlavaForConditionalGeneration(LlavaPreTrainedModel):
def __init__(self, config: LlavaConfig):
super().__init__(config)
clip_model = create_model(config.vision_tower_name)
self.vision_model = clip_model.visual
self.multi_modal_projector = LlavaMultiModalProjector(config)
self.vocab_size = config.vocab_size
self.language_model = PhiForCausalLM(config.text_config)
self.pad_token_id = (
self.config.pad_token_id if self.config.pad_token_id is not None else -1
)
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.transformer = decoder
def get_decoder(self):
return self.language_model.transformer
def tie_weights(self):
return self.language_model.tie_weights()
def resize_token_embeddings(
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None
) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(
new_num_tokens, pad_to_multiple_of
)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def _merge_input_ids_with_image_features(
self, image_features, inputs_embeds, input_ids, attention_mask, position_ids
):
num_images, num_image_patches, embed_dim = image_features.shape
batch_size, sequence_length = input_ids.shape
left_padding = not torch.sum(
input_ids[:, -1] == torch.tensor(self.pad_token_id)
)
# 1. Create a mask to know where special image tokens are
special_image_token_mask = input_ids == self.config.image_token_index
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
# Compute the maximum embed dimension
max_embed_dim = (
num_special_image_tokens.max() * (num_image_patches - 1)
) + sequence_length
batch_indices, non_image_indices = torch.where(
input_ids != self.config.image_token_index
)
# 2. Compute the positions where text should be written
# Calculate new positions for text tokens in merged image-text sequence.
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
new_token_positions = (
torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1)
- 1
)
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
if left_padding:
new_token_positions += nb_image_pad[:, None] # offset for left padding
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
# 3. Create the full embedding, already padded to the maximum position
final_embedding = torch.zeros(
batch_size,
max_embed_dim,
embed_dim,
dtype=inputs_embeds.dtype,
device=inputs_embeds.device,
)
final_attention_mask = torch.zeros(
batch_size,
max_embed_dim,
dtype=attention_mask.dtype,
device=inputs_embeds.device,
)
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
# set the corresponding tensors into their correct target device.
target_device = inputs_embeds.device
batch_indices, non_image_indices, text_to_overwrite = (
batch_indices.to(target_device),
non_image_indices.to(target_device),
text_to_overwrite.to(target_device),
)
attention_mask = attention_mask.to(target_device)
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[
batch_indices, non_image_indices
]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[
batch_indices, non_image_indices
]
# 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling
image_to_overwrite = torch.all(final_embedding == 0, dim=-1)
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[
:, None
].to(target_device)
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
raise ValueError(
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
)
final_embedding[image_to_overwrite] = (
image_features.contiguous().reshape(-1, embed_dim).to(target_device)
)
final_attention_mask |= image_to_overwrite
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_(
(final_attention_mask == 0), 1
)
return final_embedding, final_attention_mask, position_ids
def forward(
self,
input_ids: torch.LongTensor = None,
image_features: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
if image_features is not None and input_ids.shape[1] != 1:
(
inputs_embeds,
attention_mask,
position_ids,
) = self._merge_input_ids_with_image_features(
image_features,
inputs_embeds,
input_ids,
attention_mask,
position_ids,
)
outputs = self.language_model(
input_ids=None,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs[0]
if not return_dict:
output = (logits,) + outputs[1:]
return output
return LlavaCausalLMOutputWithPast(
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_features=image_features,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
attention_mask=None,
image_features=None,
**kwargs,
):
res = self.language_model.prepare_inputs_for_generation(input_ids, past_key_values, attention_mask, **kwargs)
input_ids = res["input_ids"]
past_key_values = res["past_key_values"]
attention_mask = res["attention_mask"]
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"image_features": image_features,
}
)
return model_inputs
def _reorder_cache(self, *args, **kwargs):
return self.language_model._reorder_cache(*args, **kwargs)
|