File size: 4,507 Bytes
f01b1a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from typing import List, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from transformers import (
    PretrainedConfig,
    PreTrainedModel,
    SiglipVisionConfig,
    SiglipVisionModel,
    XLMRobertaConfig,
    XLMRobertaModel,
)


class MexmaSigLIPConfig(PretrainedConfig):
    def __init__(
        self,
        optimized: bool = False,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.optimized = optimized


class MLP(nn.Module):
    def __init__(self, hidden_size: int, intermediate_size: int):
        super().__init__()
        self.fc1 = nn.Linear(hidden_size, intermediate_size)
        self.fc2 = nn.Linear(intermediate_size, hidden_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = nn.SiLU()(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states

class MultiheadAttentionPoolingHead(nn.Module):
    def __init__(self, hidden_size: int, out_hidden_size: int, num_attention_heads: int, layer_norm_eps: float, intermediate_size: int):
        super().__init__()

        self.probe = nn.Parameter(torch.randn(1, 1, hidden_size))
        self.attention = torch.nn.MultiheadAttention(hidden_size, num_attention_heads, batch_first=True)
        self.layernorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
        self.mlp = MLP(hidden_size, intermediate_size)
        self.projector = nn.Linear(hidden_size, out_hidden_size)

    def forward(self, hidden_state):
        batch_size = hidden_state.shape[0]
        probe = self.probe.repeat(batch_size, 1, 1)

        hidden_state = self.attention(probe, hidden_state, hidden_state)[0]

        residual = hidden_state
        hidden_state = self.layernorm(hidden_state)
        hidden_state = residual + self.mlp(hidden_state)
        hidden_state = self.projector(hidden_state)
        return hidden_state[:, 0]


class MexmaSigLIP(PreTrainedModel):
    config_class = MexmaSigLIPConfig

    def __init__(self, config: MexmaSigLIPConfig):
        super().__init__(config)
        self.config = config
        text_config = XLMRobertaConfig.from_pretrained("facebook/MEXMA")
        if self.config.optimized:
            text_config._attn_implementation = "sdpa"
        self.text_model = XLMRobertaModel(text_config, add_pooling_layer=False)
        self.text_projector = MultiheadAttentionPoolingHead(1024, 1152, 16, 1e-5, 4304)
        vision_congig = SiglipVisionConfig.from_pretrained(
            "google/siglip2-so400m-patch16-512"
        )
        if self.config.optimized:
            vision_congig._attn_implementation = "flash_attention_2"
            vision_congig.torch_dtype = "bfloat16"
        self.vision_model = SiglipVisionModel(vision_congig).vision_model
        self.logit_scale = torch.nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
        self.logit_bias = torch.nn.Parameter(torch.ones([]) * -10)

    def forward(self, image_inputs, input_ids, attention_mask, normalize=False):
        text_features = self.encode_texts(input_ids, attention_mask, normalize)
        image_features = self.encode_images(image_inputs, normalize)
        return {
            "image_features": image_features,
            "text_features": text_features,
            "logit_scale": self.logit_scale,
            "logit_bias": self.logit_bias,
        }

    def encode_images(
        self,
        pixel_values,
        normalize=False,
    ):
        features = self.vision_model(pixel_values).pooler_output
        return F.normalize(features, dim=-1) if normalize else features

    def encode_texts(
        self,
        input_ids,
        attention_mask,
        normalize=False,
    ):
        features = self.text_model(
            input_ids=input_ids, attention_mask=attention_mask
        ).last_hidden_state
        features = self.text_projector(features)
        return F.normalize(features, dim=-1) if normalize else features

    def get_logits(
        self,
        input_ids,
        attention_mask,
        pixel_values,
    ):
        image_features = self.encode_images(pixel_values, normalize=True)
        text_features = self.encode_texts(input_ids, attention_mask, normalize=True)
        image_logits = (
            self.logit_scale.exp() * image_features @ text_features.T + self.logit_bias
        )
        text_logits = image_logits.T
        return image_logits, text_logits