File size: 2,626 Bytes
2ee2529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: mit
base_model: naver-clova-ix/donut-base
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: donut_marriage_sm_560-140_aug_002
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# donut_marriage_sm_560-140_aug_002

This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0472

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.3237        | 1.0   | 280  | 0.2879          |
| 0.3617        | 2.0   | 560  | 0.1548          |
| 0.1783        | 3.0   | 840  | 0.1054          |
| 0.0673        | 4.0   | 1120 | 0.0931          |
| 0.0738        | 5.0   | 1400 | 0.0890          |
| 0.0333        | 6.0   | 1680 | 0.0780          |
| 0.018         | 7.0   | 1960 | 0.0740          |
| 0.0606        | 8.0   | 2240 | 0.0681          |
| 0.0148        | 9.0   | 2520 | 0.0637          |
| 0.015         | 10.0  | 2800 | 0.0589          |
| 0.0074        | 11.0  | 3080 | 0.0576          |
| 0.0003        | 12.0  | 3360 | 0.0543          |
| 0.0277        | 13.0  | 3640 | 0.0561          |
| 0.0067        | 14.0  | 3920 | 0.0571          |
| 0.0003        | 15.0  | 4200 | 0.0592          |
| 0.0005        | 16.0  | 4480 | 0.0541          |
| 0.0025        | 17.0  | 4760 | 0.0563          |
| 0.0032        | 18.0  | 5040 | 0.0503          |
| 0.0109        | 19.0  | 5320 | 0.0498          |
| 0.0003        | 20.0  | 5600 | 0.0501          |
| 0.0025        | 21.0  | 5880 | 0.0504          |
| 0.0007        | 22.0  | 6160 | 0.0480          |
| 0.0002        | 23.0  | 6440 | 0.0476          |
| 0.0029        | 24.0  | 6720 | 0.0474          |
| 0.0003        | 25.0  | 7000 | 0.0472          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0