File size: 1,895 Bytes
a2a2f52 3a9c88a a2a2f52 64bf8bf a2a2f52 64bf8bf a2a2f52 a84ea78 a2a2f52 64bf8bf a2a2f52 64bf8bf a2a2f52 64bf8bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
base_model: distilbert-base-uncased
model-index:
- name: kg_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kg_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3039
- Precision: 0.7629
- Recall: 0.7025
- F1: 0.7315
- Accuracy: 0.8965
## Model description
Lite model to extract entities and relation between them, could be leveraged for Question Answering and Querying tasks.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.3736 | 1.0 | 1063 | 0.3379 | 0.7542 | 0.6217 | 0.6816 | 0.8813 |
| 0.3078 | 2.0 | 2126 | 0.3075 | 0.7728 | 0.6678 | 0.7164 | 0.8929 |
| 0.267 | 3.0 | 3189 | 0.3017 | 0.7597 | 0.6999 | 0.7285 | 0.8954 |
| 0.2455 | 4.0 | 4252 | 0.3039 | 0.7629 | 0.7025 | 0.7315 | 0.8965 |
### Framework versions
- Transformers 4.27.3
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|