--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: knowledge-graph-nlp results: [] --- # knowledge-graph-nlp This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1830 - Precision: 0.8988 - Recall: 0.8715 - F1: 0.8849 - Accuracy: 0.9453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2908 | 1.0 | 2316 | 0.2461 | 0.8455 | 0.8023 | 0.8234 | 0.9167 | | 0.1973 | 2.0 | 4632 | 0.2000 | 0.8745 | 0.8446 | 0.8593 | 0.9341 | | 0.1593 | 3.0 | 6948 | 0.1863 | 0.8973 | 0.8632 | 0.8799 | 0.9427 | | 0.1336 | 4.0 | 9264 | 0.1830 | 0.8988 | 0.8715 | 0.8849 | 0.9453 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2