vldnechai commited on
Commit
0a05cca
·
1 Parent(s): 81482e5

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2069.78 +/- 24.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:898d58e0148a3b741fe7bc8287f33aeba854a64af5aaa79fbb210d72da97ba96
3
+ size 129231
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fea093d4ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fea093d4d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fea093d4dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fea093d4e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fea093d4ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fea093d4f70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fea093d8040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fea093d80d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fea093d8160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fea093d81f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fea093d8280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fea093d8310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fea093d68c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1682161501302497864,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANyTsT+pkTk+qPHPPkgiLUAcoXE/qUmVP7rrfj+1sJa/4eP/Pr5KUr9kCrc+Fobvv0jhiD93E4U+GhNrvwdikj9pbzW+9fICwFBsED8JeL++25B9v4LW0r++BiY/wGK9vriNYL/IZiQ/EeqnPiI+Hj9TFni+NlbiviQTQj8WoVU/JtmfPhxcl78U5Yw7yQqZvqBF3z7UStO/C415vurkyD9zxGc/LFifv3liMT/3qxA+I7tMv+HXrb8wks0+phf8vgrnR7/1bt6+KIFrvkImZT64jWC/IlHHvxHqpz4iPh4/qAm8vrb/wz7n1Wo+UgQkQNYyDEDzP/e/VzmcP5LGRz7ZD0u/jvgmv4vLZj9t5Z8/plPfv+R4pj4sQv69siq6v745Gb/OYdg/raQiP1F/ckAq0so/OyJ5PRQOsr6u+Vk+uI1gvyJRx78R6qc+BhPPv4hDlz+elgY/LP+fPXEgIUBIfcU/292APk0GpD/w602/3PL+PiDZmb7wdnU+NlkMwF5lrD+5NRo/5oyNv7/iZj/jrA+/OX/MvxcH4z5KgGa/QUW0v4FBfr9b8Lu+KJh5v7iNYL/IZiQ/EeqnPiI+Hj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADHwo62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGAetPQAAAABaWvG/AAAAAAvyjb0AAAAAzKr9PwAAAABLY/M9AAAAAGLR/z8AAAAAHm8PPgAAAAB64++/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG2t/tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA/JBj0AAAAAyHDgvwAAAACJ+wa+AAAAAOUV4T8AAAAAd3mqPAAAAACxCwFAAAAAAAgw0TwAAAAAXOXqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKHosrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAe3go+AAAAAOC87b8AAAAAQtedPQAAAADB6ek/AAAAALWcW70AAAAAkNbfPwAAAAC9F/E9AAAAAJrd/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiw22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALP1ivQAAAAD6e/m/AAAAAM9QQL0AAAAAX9rqPwAAAACFdXk8AAAAABTT6z8AAAAAxg7mPQAAAAC+lvK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJu3t/0/W2CMAWyUTegDjAF0lEdAregCzw+dLHV9lChoBkdAno8c9jgAImgHTegDaAhHQK3o13fQ8fV1fZQoaAZHQJ8T783uNPxoB03oA2gIR0Ct7FkdNnGsdX2UKGgGR0CeoM3ljmSyaAdN6ANoCEdAreyb4etCA3V9lChoBkdAn0eZ+H8CP2gHTegDaAhHQK325iBGx2V1fZQoaAZHQJ5mD/JeVs1oB03oA2gIR0Ct+D4VARkFdX2UKGgGR0CdnaeBQN1AaAdN6ANoCEdArfyTgflp5HV9lChoBkdAnXV/Gp++d2gHTegDaAhHQK3802hqTKV1fZQoaAZHQJ7im+cpb2VoB03oA2gIR0CuBO28yvcKdX2UKGgGR0CfokISlFc6aAdN6ANoCEdArgXQkzGgjHV9lChoBkdAntFrg88s+WgHTegDaAhHQK4JM9TxXn11fZQoaAZHQJ6U0SsbNr1oB03oA2gIR0CuCXkXtShrdX2UKGgGR0CgmLHpr1ujaAdN6ANoCEdArhKxOafBe3V9lChoBkdAn4iKtPpIMGgHTegDaAhHQK4UCe9zwMJ1fZQoaAZHQJ+lHVwxWT5oB03oA2gIR0CuGTrEUCaJdX2UKGgGR0CgAbT101ZUaAdN6ANoCEdArhl/hhpg1HV9lChoBkdAn6zTjaPCEmgHTegDaAhHQK4hi3YL9dh1fZQoaAZHQJ9p265Gz8hoB03oA2gIR0CuImEtVaOhdX2UKGgGR0CgR6w6ySmqaAdN6ANoCEdAriXX1YhdMXV9lChoBkdAm1bqvV3EAGgHTegDaAhHQK4mFJNj9XN1fZQoaAZHQKAMYyJsO5JoB03oA2gIR0CuLtmtp22YdX2UKGgGR0Cai94RmK64aAdN6ANoCEdArjAbW7OE/XV9lChoBkdAnbn216Vt42gHTegDaAhHQK41bE74i5d1fZQoaAZHQJ6OyuIRAbBoB03oA2gIR0CuNc5q20AtdX2UKGgGR0CazeR0lqrSaAdN6ANoCEdArj5kq4H5anV9lChoBkdAmx4Lpqynk2gHTegDaAhHQK4/O2c8Tzx1fZQoaAZHQJzOMnAqNIdoB03oA2gIR0CuQrr6+FlDdX2UKGgGR0Cd7qy6tknUaAdN6ANoCEdArkL9m+TNdXV9lChoBkdAnp6yjxkNF2gHTegDaAhHQK5K8UM5OrR1fZQoaAZHQJ1BNVvMr3FoB03oA2gIR0CuTAoESuhcdX2UKGgGR0Ce/dg+hXbNaAdN6ANoCEdArlESK+BYm3V9lChoBkdAnk9FDKHO8mgHTegDaAhHQK5RcuRLbpN1fZQoaAZHQJ+8VPnB+F1oB03oA2gIR0CuWw0ornTzdX2UKGgGR0CfrziFj/dZaAdN6ANoCEdArlvrr1M/QnV9lChoBkdAoQzJ3xFy72gHTegDaAhHQK5fYGnn+yZ1fZQoaAZHQJ/MytW+49ZoB03oA2gIR0CuX566z3RHdX2UKGgGR0CfzEfShJyyaAdN6ANoCEdArmeoraufVnV9lChoBkdAnq7vHDJlrmgHTegDaAhHQK5ogHmA9V51fZQoaAZHQJ3l4Djin51oB03oA2gIR0CubPb3fyf+dX2UKGgGR0CcH3oo/iYLaAdN6ANoCEdArm1OPRzBAXV9lChoBkdAmK9rd30PH2gHTegDaAhHQK53z+x4Y791fZQoaAZHQJgPhs54nndoB03oA2gIR0CueKiKJl8PdX2UKGgGR0CUauWyC4BnaAdN6ANoCEdArnwyFZgXuXV9lChoBkdAlYh1d1MdtGgHTegDaAhHQK58c01IiC91fZQoaAZHQJK5j9/BnBdoB03oA2gIR0CuhJZYHPeIdX2UKGgGR0CR3UHPu5SWaAdN6ANoCEdAroVvEQ5FPXV9lChoBkdAlgR/zasZHmgHTegDaAhHQK6JUB/Zuht1fZQoaAZHQIzMV5rxiG5oB03oA2gIR0Cuiao8yN4rdX2UKGgGR0CUojH+IdlvaAdN6ANoCEdArpS9+gDifnV9lChoBkdAlf1H1OCXhWgHTegDaAhHQK6VmCK77Kt1fZQoaAZHQJwjMgbIcR1oB03oA2gIR0CumQKrilzmdX2UKGgGR0CZtdTuv2XcaAdN6ANoCEdArplCsny/bnV9lChoBkdAoCDyjJuEVWgHTegDaAhHQK6hO2lVLjB1fZQoaAZHQJ5jSb9ZRsNoB03oA2gIR0CuohV+Zw4sdX2UKGgGR0CfOMr/KhcraAdN6ANoCEdArqWTmU4aP3V9lChoBkdAmqDfATIvJ2gHTegDaAhHQK6lzppvgm91fZQoaAZHQJ0ElG6PKdRoB03oA2gIR0CusVEZzgdfdX2UKGgGR0CcUrisXBP9aAdN6ANoCEdArrIu0CzTnnV9lChoBkdAnhLDsIE8rGgHTegDaAhHQK61pE74i5d1fZQoaAZHQJ4lbB/I8yNoB03oA2gIR0CutedbX6IndX2UKGgGR0CbwibZOBUaaAdN6ANoCEdArr4PSa3I/HV9lChoBkdAnA/UrK/202gHTegDaAhHQK6+6yQgcLl1fZQoaAZHQJt9X/T9bX9oB03oA2gIR0Cuwk/XPJJYdX2UKGgGR0CcM9DCxeLOaAdN6ANoCEdArsKPZPEbYXV9lChoBkdAnHypKjBVMmgHTegDaAhHQK7NZaGHpKV1fZQoaAZHQJ7g71YhdMVoB03oA2gIR0CuzrsvZh8ZdX2UKGgGR0CctopVS4vwaAdN6ANoCEdArtJxt1p0wXV9lChoBkdAmfk/9kz412gHTegDaAhHQK7StlK9PDZ1fZQoaAZHQJ7DbArQPZtoB03oA2gIR0Cu2o15Sm65dX2UKGgGR0Ce2MfCyhSMaAdN6ANoCEdArttmgHu7YnV9lChoBkdAnQHp3s5XEWgHTegDaAhHQK7ezAB1cMV1fZQoaAZHQJ08NGiHqNZoB03oA2gIR0Cu3wabF0gbdX2UKGgGR0CdWPh4t6HCaAdN6ANoCEdArujlxMnJDHV9lChoBkdAnyVex0MgEGgHTegDaAhHQK7qNUrCm/F1fZQoaAZHQJwTdaePJaJoB03oA2gIR0Cu7sNALRa5dX2UKGgGR0CeJIYVIqb0aAdN6ANoCEdAru8KtNi6QXV9lChoBkdAmc1Ex20Re2gHTegDaAhHQK73Fgssg+11fZQoaAZHQJlkymDUVi5oB03oA2gIR0Cu9+5RCQcQdX2UKGgGR0CXe2drftQbaAdN6ANoCEdArvtejM3ZPHV9lChoBkdAmGUucH4XXWgHTegDaAhHQK77oXkYGdJ1fZQoaAZHQJz1DZUT+NtoB03oA2gIR0CvBFSvTw2EdX2UKGgGR0CeQdN1hb4baAdN6ANoCEdArwWMQ04zanV9lChoBkdAnj6N25hBq2gHTegDaAhHQK8K1+3pfQd1fZQoaAZHQJ6k17w8W9FoB03oA2gIR0CvCzkAHVwxdX2UKGgGR0CfkBYPoV2zaAdN6ANoCEdArxNwH/tICnV9lChoBkdAnmjuYQarFWgHTegDaAhHQK8UVnX/YJ51fZQoaAZHQJ1VlF5OafBoB03oA2gIR0CvF8Yq5LAYdX2UKGgGR0Ce2tz4UN8WaAdN6ANoCEdArxgFGTcIq3V9lChoBkdAn0SF6AvtdGgHTegDaAhHQK8gSLc9GI91fZQoaAZHQKAIv0PH1e1oB03oA2gIR0CvIX7PIGQkdX2UKGgGR0CfLj49X9zfaAdN6ANoCEdAryaC4UeuFHV9lChoBkdAneYYLsrupmgHTegDaAhHQK8m502cawV1fZQoaAZHQJ3OH31zySVoB03oA2gIR0CvL+sotthvdX2UKGgGR0CcGW4Pf8/EaAdN6ANoCEdArzDB26kIonV9lChoBkdAmgWJYLb5/WgHTegDaAhHQK80JtCzC1t1fZQoaAZHQJ37bxe9i+doB03oA2gIR0CvNGdLg4wRdX2UKGgGR0CcfAlVLi++aAdN6ANoCEdArzxSrcTJyXV9lChoBkdAniIpDmbLEGgHTegDaAhHQK89KjwhGH51fZQoaAZHQJzNnORkmQdoB03oA2gIR0CvQbSDh99ddX2UKGgGR0CgFHmYjSogaAdN6ANoCEdAr0INTo+wDHVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db4f1f8d3ba1bf7cc1fb728882762801c86c2be359f233015cd75d642e7925b1
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0c7ae07f3ce148e3c91ca457bf23a7ff40fe887c35a96358205414b5984a9cc
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fea093d4ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fea093d4d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fea093d4dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fea093d4e50>", "_build": "<function ActorCriticPolicy._build at 0x7fea093d4ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fea093d4f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fea093d8040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fea093d80d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fea093d8160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fea093d81f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fea093d8280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fea093d8310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fea093d68c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682161501302497864, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANyTsT+pkTk+qPHPPkgiLUAcoXE/qUmVP7rrfj+1sJa/4eP/Pr5KUr9kCrc+Fobvv0jhiD93E4U+GhNrvwdikj9pbzW+9fICwFBsED8JeL++25B9v4LW0r++BiY/wGK9vriNYL/IZiQ/EeqnPiI+Hj9TFni+NlbiviQTQj8WoVU/JtmfPhxcl78U5Yw7yQqZvqBF3z7UStO/C415vurkyD9zxGc/LFifv3liMT/3qxA+I7tMv+HXrb8wks0+phf8vgrnR7/1bt6+KIFrvkImZT64jWC/IlHHvxHqpz4iPh4/qAm8vrb/wz7n1Wo+UgQkQNYyDEDzP/e/VzmcP5LGRz7ZD0u/jvgmv4vLZj9t5Z8/plPfv+R4pj4sQv69siq6v745Gb/OYdg/raQiP1F/ckAq0so/OyJ5PRQOsr6u+Vk+uI1gvyJRx78R6qc+BhPPv4hDlz+elgY/LP+fPXEgIUBIfcU/292APk0GpD/w602/3PL+PiDZmb7wdnU+NlkMwF5lrD+5NRo/5oyNv7/iZj/jrA+/OX/MvxcH4z5KgGa/QUW0v4FBfr9b8Lu+KJh5v7iNYL/IZiQ/EeqnPiI+Hj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADHwo62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGAetPQAAAABaWvG/AAAAAAvyjb0AAAAAzKr9PwAAAABLY/M9AAAAAGLR/z8AAAAAHm8PPgAAAAB64++/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG2t/tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA/JBj0AAAAAyHDgvwAAAACJ+wa+AAAAAOUV4T8AAAAAd3mqPAAAAACxCwFAAAAAAAgw0TwAAAAAXOXqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKHosrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAe3go+AAAAAOC87b8AAAAAQtedPQAAAADB6ek/AAAAALWcW70AAAAAkNbfPwAAAAC9F/E9AAAAAJrd/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiw22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALP1ivQAAAAD6e/m/AAAAAM9QQL0AAAAAX9rqPwAAAACFdXk8AAAAABTT6z8AAAAAxg7mPQAAAAC+lvK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJu3t/0/W2CMAWyUTegDjAF0lEdAregCzw+dLHV9lChoBkdAno8c9jgAImgHTegDaAhHQK3o13fQ8fV1fZQoaAZHQJ8T783uNPxoB03oA2gIR0Ct7FkdNnGsdX2UKGgGR0CeoM3ljmSyaAdN6ANoCEdAreyb4etCA3V9lChoBkdAn0eZ+H8CP2gHTegDaAhHQK325iBGx2V1fZQoaAZHQJ5mD/JeVs1oB03oA2gIR0Ct+D4VARkFdX2UKGgGR0CdnaeBQN1AaAdN6ANoCEdArfyTgflp5HV9lChoBkdAnXV/Gp++d2gHTegDaAhHQK3802hqTKV1fZQoaAZHQJ7im+cpb2VoB03oA2gIR0CuBO28yvcKdX2UKGgGR0CfokISlFc6aAdN6ANoCEdArgXQkzGgjHV9lChoBkdAntFrg88s+WgHTegDaAhHQK4JM9TxXn11fZQoaAZHQJ6U0SsbNr1oB03oA2gIR0CuCXkXtShrdX2UKGgGR0CgmLHpr1ujaAdN6ANoCEdArhKxOafBe3V9lChoBkdAn4iKtPpIMGgHTegDaAhHQK4UCe9zwMJ1fZQoaAZHQJ+lHVwxWT5oB03oA2gIR0CuGTrEUCaJdX2UKGgGR0CgAbT101ZUaAdN6ANoCEdArhl/hhpg1HV9lChoBkdAn6zTjaPCEmgHTegDaAhHQK4hi3YL9dh1fZQoaAZHQJ9p265Gz8hoB03oA2gIR0CuImEtVaOhdX2UKGgGR0CgR6w6ySmqaAdN6ANoCEdAriXX1YhdMXV9lChoBkdAm1bqvV3EAGgHTegDaAhHQK4mFJNj9XN1fZQoaAZHQKAMYyJsO5JoB03oA2gIR0CuLtmtp22YdX2UKGgGR0Cai94RmK64aAdN6ANoCEdArjAbW7OE/XV9lChoBkdAnbn216Vt42gHTegDaAhHQK41bE74i5d1fZQoaAZHQJ6OyuIRAbBoB03oA2gIR0CuNc5q20AtdX2UKGgGR0CazeR0lqrSaAdN6ANoCEdArj5kq4H5anV9lChoBkdAmx4Lpqynk2gHTegDaAhHQK4/O2c8Tzx1fZQoaAZHQJzOMnAqNIdoB03oA2gIR0CuQrr6+FlDdX2UKGgGR0Cd7qy6tknUaAdN6ANoCEdArkL9m+TNdXV9lChoBkdAnp6yjxkNF2gHTegDaAhHQK5K8UM5OrR1fZQoaAZHQJ1BNVvMr3FoB03oA2gIR0CuTAoESuhcdX2UKGgGR0Ce/dg+hXbNaAdN6ANoCEdArlESK+BYm3V9lChoBkdAnk9FDKHO8mgHTegDaAhHQK5RcuRLbpN1fZQoaAZHQJ+8VPnB+F1oB03oA2gIR0CuWw0ornTzdX2UKGgGR0CfrziFj/dZaAdN6ANoCEdArlvrr1M/QnV9lChoBkdAoQzJ3xFy72gHTegDaAhHQK5fYGnn+yZ1fZQoaAZHQJ/MytW+49ZoB03oA2gIR0CuX566z3RHdX2UKGgGR0CfzEfShJyyaAdN6ANoCEdArmeoraufVnV9lChoBkdAnq7vHDJlrmgHTegDaAhHQK5ogHmA9V51fZQoaAZHQJ3l4Djin51oB03oA2gIR0CubPb3fyf+dX2UKGgGR0CcH3oo/iYLaAdN6ANoCEdArm1OPRzBAXV9lChoBkdAmK9rd30PH2gHTegDaAhHQK53z+x4Y791fZQoaAZHQJgPhs54nndoB03oA2gIR0CueKiKJl8PdX2UKGgGR0CUauWyC4BnaAdN6ANoCEdArnwyFZgXuXV9lChoBkdAlYh1d1MdtGgHTegDaAhHQK58c01IiC91fZQoaAZHQJK5j9/BnBdoB03oA2gIR0CuhJZYHPeIdX2UKGgGR0CR3UHPu5SWaAdN6ANoCEdAroVvEQ5FPXV9lChoBkdAlgR/zasZHmgHTegDaAhHQK6JUB/Zuht1fZQoaAZHQIzMV5rxiG5oB03oA2gIR0Cuiao8yN4rdX2UKGgGR0CUojH+IdlvaAdN6ANoCEdArpS9+gDifnV9lChoBkdAlf1H1OCXhWgHTegDaAhHQK6VmCK77Kt1fZQoaAZHQJwjMgbIcR1oB03oA2gIR0CumQKrilzmdX2UKGgGR0CZtdTuv2XcaAdN6ANoCEdArplCsny/bnV9lChoBkdAoCDyjJuEVWgHTegDaAhHQK6hO2lVLjB1fZQoaAZHQJ5jSb9ZRsNoB03oA2gIR0CuohV+Zw4sdX2UKGgGR0CfOMr/KhcraAdN6ANoCEdArqWTmU4aP3V9lChoBkdAmqDfATIvJ2gHTegDaAhHQK6lzppvgm91fZQoaAZHQJ0ElG6PKdRoB03oA2gIR0CusVEZzgdfdX2UKGgGR0CcUrisXBP9aAdN6ANoCEdArrIu0CzTnnV9lChoBkdAnhLDsIE8rGgHTegDaAhHQK61pE74i5d1fZQoaAZHQJ4lbB/I8yNoB03oA2gIR0CutedbX6IndX2UKGgGR0CbwibZOBUaaAdN6ANoCEdArr4PSa3I/HV9lChoBkdAnA/UrK/202gHTegDaAhHQK6+6yQgcLl1fZQoaAZHQJt9X/T9bX9oB03oA2gIR0Cuwk/XPJJYdX2UKGgGR0CcM9DCxeLOaAdN6ANoCEdArsKPZPEbYXV9lChoBkdAnHypKjBVMmgHTegDaAhHQK7NZaGHpKV1fZQoaAZHQJ7g71YhdMVoB03oA2gIR0CuzrsvZh8ZdX2UKGgGR0CctopVS4vwaAdN6ANoCEdArtJxt1p0wXV9lChoBkdAmfk/9kz412gHTegDaAhHQK7StlK9PDZ1fZQoaAZHQJ7DbArQPZtoB03oA2gIR0Cu2o15Sm65dX2UKGgGR0Ce2MfCyhSMaAdN6ANoCEdArttmgHu7YnV9lChoBkdAnQHp3s5XEWgHTegDaAhHQK7ezAB1cMV1fZQoaAZHQJ08NGiHqNZoB03oA2gIR0Cu3wabF0gbdX2UKGgGR0CdWPh4t6HCaAdN6ANoCEdArujlxMnJDHV9lChoBkdAnyVex0MgEGgHTegDaAhHQK7qNUrCm/F1fZQoaAZHQJwTdaePJaJoB03oA2gIR0Cu7sNALRa5dX2UKGgGR0CeJIYVIqb0aAdN6ANoCEdAru8KtNi6QXV9lChoBkdAmc1Ex20Re2gHTegDaAhHQK73Fgssg+11fZQoaAZHQJlkymDUVi5oB03oA2gIR0Cu9+5RCQcQdX2UKGgGR0CXe2drftQbaAdN6ANoCEdArvtejM3ZPHV9lChoBkdAmGUucH4XXWgHTegDaAhHQK77oXkYGdJ1fZQoaAZHQJz1DZUT+NtoB03oA2gIR0CvBFSvTw2EdX2UKGgGR0CeQdN1hb4baAdN6ANoCEdArwWMQ04zanV9lChoBkdAnj6N25hBq2gHTegDaAhHQK8K1+3pfQd1fZQoaAZHQJ6k17w8W9FoB03oA2gIR0CvCzkAHVwxdX2UKGgGR0CfkBYPoV2zaAdN6ANoCEdArxNwH/tICnV9lChoBkdAnmjuYQarFWgHTegDaAhHQK8UVnX/YJ51fZQoaAZHQJ1VlF5OafBoB03oA2gIR0CvF8Yq5LAYdX2UKGgGR0Ce2tz4UN8WaAdN6ANoCEdArxgFGTcIq3V9lChoBkdAn0SF6AvtdGgHTegDaAhHQK8gSLc9GI91fZQoaAZHQKAIv0PH1e1oB03oA2gIR0CvIX7PIGQkdX2UKGgGR0CfLj49X9zfaAdN6ANoCEdAryaC4UeuFHV9lChoBkdAneYYLsrupmgHTegDaAhHQK8m502cawV1fZQoaAZHQJ3OH31zySVoB03oA2gIR0CvL+sotthvdX2UKGgGR0CcGW4Pf8/EaAdN6ANoCEdArzDB26kIonV9lChoBkdAmgWJYLb5/WgHTegDaAhHQK80JtCzC1t1fZQoaAZHQJ37bxe9i+doB03oA2gIR0CvNGdLg4wRdX2UKGgGR0CcfAlVLi++aAdN6ANoCEdArzxSrcTJyXV9lChoBkdAniIpDmbLEGgHTegDaAhHQK89KjwhGH51fZQoaAZHQJzNnORkmQdoB03oA2gIR0CvQbSDh99ddX2UKGgGR0CgFHmYjSogaAdN6ANoCEdAr0INTo+wDHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43947896d7b967d4dbaa406a48fcafb894d3b11baad2f7ff4c1ca8cf546f71bd
3
+ size 1248029
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2069.7757206903307, "std_reward": 24.465888786451107, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-22T12:09:21.209646"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:462ace23509ab0a11af3acdb44f70b248f21fa91040c0deb0b8189b52e15752d
3
+ size 2170