File size: 1,792 Bytes
a623f0f
 
 
 
 
 
 
 
 
 
 
ee4a802
 
 
 
 
 
 
 
 
 
 
 
e1334d3
88238d8
 
 
 
 
 
 
 
 
 
ee4a802
 
 
 
a623f0f
 
 
 
 
 
 
 
 
0461d8c
a623f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: bigscience-bloom-rail-1.0
language:
- vi
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- bloom
- causal-lm
- pytorch
model-index:
- name: vlsp-2023-vllm/hoa-1b4
  results:
  - task:
      name: Word prediction
      type: text-generation
    dataset:
      type: vlsp-2023-vllm/vi_lambada
      name: vi_lambada
      split: test
    metrics:
    - type: Perplexity
      value: 8.606673731963474
  - task:
      name: Fewshot Translation
      type: translation
    dataset:
      type: vlsp-2023-vllm/en-to-vi-formal-informal-tranlations
      name: English to Vietnamese Formal/Informal translation
      split: test
    metrics:
    - type: SacreBLEU
      value: 25.5
datasets:
- vlsp-2023-vllm/vi_lambada
metrics:
- perplexity
---

# Hoa 1B4 (Bloom architecture)

Hoa is an autoregressive Large Language Model (LLM), based on Bloom's model architecture. 
Hoa was trained on part of the Common Crawl dataset in Vietnamese and English.

Details will be available soon.

To contact us, mail to: leanhcuong@gmail.com (Lê Anh Cường) | hieunguyen1053@outlook.com (Hiếu) | nv.cuong@int2.vn (Nguyễn Việt Cường)

### How to use 
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("vlsp-2023-vllm/hoa-1b4")
model = AutoModelForCausalLM.from_pretrained("vlsp-2023-vllm/hoa-1b4", low_cpu_mem_usage=True)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
model.to(device)

prompt = "Địa chỉ trường Đại học Tôn Đức Thắng nằm ở số"
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device)

gen_tokens = model.generate(input_ids, max_length=max_length, repetition_penalty=1.1)

print(tokenizer.batch_decode(gen_tokens)[0])
```