hoa-1b4 / README.md
hieunguyen1053's picture
Update README.md
66762dd
metadata
license: bigscience-bloom-rail-1.0
language:
  - vi
  - en
library_name: transformers
pipeline_tag: text-generation
tags:
  - bloom
  - causal-lm
  - pytorch
model-index:
  - name: vlsp-2023-vllm/hoa-1b4
    results:
      - task:
          name: Word prediction
          type: text-generation
        dataset:
          type: vlsp-2023-vllm/vi_lambada
          name: vi_lambada
          split: test
        metrics:
          - type: Perplexity
            value: 8.606673731963474
      - task:
          name: Fewshot Translation
          type: translation
        dataset:
          type: vlsp-2023-vllm/en-to-vi-formal-informal-tranlations
          name: English to Vietnamese Formal/Informal translation
          split: test
        metrics:
          - type: SacreBLEU
            value: 25.5
datasets:
  - vlsp-2023-vllm/vi_lambada
metrics:
  - perplexity

Hoa 1B4 (Bloom architecture)

Hoa is an autoregressive Large Language Model (LLM), based on Bloom's model architecture. Hoa was trained on part of the Common Crawl dataset in Vietnamese and English.

Details will be available soon.

To contact us, mail to: leanhcuong@gmail.com (Lê Anh Cường) | hieunguyen1053@outlook.com (Hiếu) | nv.cuong@int2.vn (Nguyễn Việt Cường)

How to use

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("vlsp-2023-vllm/hoa-1b4")
model = AutoModelForCausalLM.from_pretrained("vlsp-2023-vllm/hoa-1b4", low_cpu_mem_usage=True)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
model.to(device)

prompt = "Địa chỉ trường Đại học Tôn Đức Thắng nằm ở số"
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device)

gen_tokens = model.generate(input_ids, max_length=max_length, repetition_penalty=1.1)

print(tokenizer.batch_decode(gen_tokens)[0])