File size: 2,518 Bytes
a6ceadc
 
 
 
 
 
 
7efe708
a6ceadc
 
 
 
 
 
7efe708
a6ceadc
 
 
7efe708
 
 
 
 
 
a6ceadc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7efe708
a6ceadc
 
 
 
 
7efe708
 
 
 
 
 
 
 
 
 
a6ceadc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-samsum-icsi-ami-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large-cnn-samsum-icsi-ami-v2

This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.8987
- Rouge1: 39.0928
- Rouge2: 10.8408
- Rougel: 21.9138
- Rougelsum: 35.5067
- Gen Len: 138.7941

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| No log        | 1.0   | 135  | 3.2308          | 38.4274 | 13.6461 | 22.366  | 35.2353   | 185.7941 |
| No log        | 2.0   | 270  | 3.3026          | 40.1748 | 11.7944 | 23.2655 | 36.4718   | 146.8529 |
| No log        | 3.0   | 405  | 3.5199          | 39.8209 | 12.1621 | 22.7772 | 36.4967   | 141.7647 |
| 2.2131        | 4.0   | 540  | 4.0508          | 40.4325 | 11.6547 | 22.9958 | 36.8782   | 131.4412 |
| 2.2131        | 5.0   | 675  | 4.6988          | 38.4097 | 9.8309  | 20.3894 | 34.1967   | 145.9706 |
| 2.2131        | 6.0   | 810  | 4.9590          | 38.5758 | 9.6335  | 20.865  | 35.0321   | 169.2353 |
| 2.2131        | 7.0   | 945  | 5.4264          | 38.2813 | 9.5764  | 21.1406 | 34.5989   | 148.0294 |
| 0.401         | 8.0   | 1080 | 5.4887          | 38.3014 | 9.6881  | 21.2398 | 34.1584   | 139.3529 |
| 0.401         | 9.0   | 1215 | 5.8044          | 39.9603 | 10.4329 | 22.6895 | 36.2406   | 145.2353 |
| 0.401         | 10.0  | 1350 | 5.8987          | 39.0928 | 10.8408 | 21.9138 | 35.5067   | 138.7941 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2