--- language: zh --- # albert_chinese_tiny This a albert_chinese_tiny model from [brightmart/albert_zh project](https://github.com/brightmart/albert_zh), albert_tiny_google_zh model converted by huggingface's [script](https://github.com/huggingface/transformers/blob/master/src/transformers/convert_albert_original_tf_checkpoint_to_pytorch.py) ## Attention (注意) Since sentencepiece is not used in albert_chinese_tiny model you have to call BertTokenizer instead of AlbertTokenizer !!! we can eval it using an example on MaskedLM 由於 albert_chinese_tiny 模型沒有用 sentencepiece 用AlbertTokenizer會載不進詞表,因此需要改用BertTokenizer !!! 我們可以跑MaskedLM預測來驗證這個做法是否正確 ## Justify (驗證有效性) [colab trial](https://colab.research.google.com/drive/1Wjz48Uws6-VuSHv_-DcWLilv77-AaYgj) ```python from transformers import * import torch from torch.nn.functional import softmax pretrained = 'voidful/albert_chinese_tiny' tokenizer = BertTokenizer.from_pretrained(pretrained) model = AlbertForMaskedLM.from_pretrained(pretrained) inputtext = "今天[MASK]情很好" maskpos = tokenizer.encode(inputtext, add_special_tokens=True).index(103) input_ids = torch.tensor(tokenizer.encode(inputtext, add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids, masked_lm_labels=input_ids) loss, prediction_scores = outputs[:2] logit_prob = softmax(prediction_scores[0, maskpos]).data.tolist() predicted_index = torch.argmax(prediction_scores[0, maskpos]).item() predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0] print(predicted_token,logit_prob[predicted_index]) ``` Result: `感 0.40312355756759644`