File size: 8,893 Bytes
e7affe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import os
import logging
import datasets
from datasets import load_dataset
import torch
from torch.utils.data import Dataset
from transformers import Trainer, TrainingArguments
import wandb
from mmlm.model_full import MMLMConfig, MMLM
from mmlm.utility import load_audio_to_tensor
import numpy as np
# ========================
# Global Configuration
# ========================
WANDB_PROJECT_NAME = "mmlm-conv-full"
WANDB_API_KEY = "0793be66347fa388f401f66cb39fd661452d660d"
DATASET = load_dataset("voidful/all_conv_data_filtered_small")['train']
# DATASET = datasets.load_from_disk("/mnt/home/ntuspeechlabtaipei1/anthony/Soundon-TTS-preprocessing/hf_dialogue_chinese_llama31_70B_user_long_2_with_silence")
LM_MODEL_NAME = "voidful/Llama-3.2-8B-Whisper"
OUTPUT_DIR = "/mnt/home/ntuspeechlabtaipei1/mmlm-conv-training-full"
MODEL_SAVE_PATH = "/mnt/home/ntuspeechlabtaipei1/mmlm-conv-model-full"
TRAIN_TEST_SPLIT_RATIO = 0.1
EPOCHS = 300
BATCH_SIZE = 1
LEARNING_RATE = 8e-4
GRADIENT_ACCUMULATION_STEPS = 2
USE_BF16 = True
USE_FP16 = False
LOGGING_STEPS = 1
SAVE_TOTAL_LIMIT = 10
GRADIENT_CHECKPOINTING = True
PAD_VALUE = 0.0
MAX_LENGTH = 8000
# Setup logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
def initialize_wandb():
"""Initialize Weights and Biases for tracking experiments."""
wandb.login(key=WANDB_API_KEY)
wandb.init(
project=WANDB_PROJECT_NAME,
config={
"epochs": EPOCHS,
"batch_size": BATCH_SIZE,
"learning_rate": LEARNING_RATE,
},
group="mmlm",
)
class CustomDataset(Dataset):
"""Custom dataset class for handling audio-text data."""
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
entry = self.data
# print(len(entry[idx]["user_audio_path"]['array']),entry[idx]["user_audio_path"]['array'])
audio_path = torch.tensor(entry[idx]["user_audio_path"]['array'])
# if not os.path.exists(audio_path):
# audio_path = os.path.join("/mnt/home/ntuspeechlabtaipei1/anthony/Soundon-TTS-preprocessing/", audio_path)
audio_tensor = load_audio_to_tensor(audio_path)[0]
# print("audio_tensor",audio_tensor.shape,)
x_vector = entry[idx]["x-vector"]
text_with_pad = entry[idx]["text_with_pad"]
user_text_with_pad = text_with_pad[0]
user_text_with_pad = "[PAD]" + user_text_with_pad
audio_tensor = torch.cat([audio_tensor[0], torch.zeros(int(24000 * 0.08 * 1))], dim=0).unsqueeze(dim=0)
# machine_text_with_pad = text_with_pad[1]
machine_text_with_pad = text_with_pad[1][5:] + "[PAD]"
audio_unit = np.array(entry[idx]["machine_unit"])
zero_sequences = [] # To store start and end times
start = None # Initialize start as None
for i, value in enumerate(audio_unit[0]): # Iterate through the first element of the audio tensor
if value != 0 and start is None:
start = i # Start of a zero sequence
elif value == 0 and start is not None:
# End of a zero sequence
zero_sequences.append((start * 24000 * 0.08, (i - 1) * 24000 * 0.08))
start = None
# Handle sequence ending at the last element
if start is not None:
zero_sequences.append((start * 24000 * 0.08, (len(audio_unit[0]) - 1) * 24000 * 0.08))
for i in zero_sequences:
start, end = i
start, end = int(start), int(end)
if end > audio_tensor.size(1):
end = audio_tensor.size(1)
audio_tensor[0, start:end] = torch.zeros(end - start)
padding_token = 0
bos_token_id = 0
eos_token_id = 0
audio_unit = np.hstack((audio_unit, np.zeros((audio_unit.shape[0], 1), dtype=int)))
for i in range(1, audio_unit.shape[0]):
audio_unit[i, 1:] = audio_unit[i, :-1]
audio_unit[i, 0] = padding_token
matrix_with_bos = np.hstack((np.full((audio_unit.shape[0], 1), bos_token_id), audio_unit))
matrix_with_bos_eos = np.hstack((matrix_with_bos, np.full((matrix_with_bos.shape[0], 1), eos_token_id)))
input_audio_unit = matrix_with_bos_eos[:, :-1]
target_audio_unit = matrix_with_bos_eos[:, 1:]
return {
"input_values": torch.tensor(audio_tensor),
"speaker_codecs": torch.tensor(input_audio_unit),
"speaker_codec_labels": torch.tensor(target_audio_unit),
"speaker_embs": torch.tensor(x_vector[1]),
"speaker_texts": self.tokenizer(machine_text_with_pad, add_special_tokens=False, return_tensors="pt")[
"input_ids"],
"listener_texts": self.tokenizer(user_text_with_pad, add_special_tokens=False, return_tensors="pt")[
"input_ids"],
}
class CustomDataCollator:
"""Custom data collator for batching audio and text inputs."""
def __init__(self, text_pad_value, audio_pad_value=PAD_VALUE):
self.text_pad_value = text_pad_value
self.audio_pad_value = audio_pad_value
def __call__(self, batch):
return {
"input_values": torch.cat([item["input_values"] for item in batch]),
"speaker_codecs": torch.cat([item["speaker_codecs"] for item in batch]),
"speaker_codec_labels": torch.cat([item["speaker_codec_labels"] for item in batch]),
"speaker_embs": torch.cat([item["speaker_embs"] for item in batch]),
"speaker_texts": torch.cat([item["speaker_texts"] for item in batch]),
"listener_texts": torch.cat([item["listener_texts"] for item in batch]),
}
def compute_metrics(pred):
"""Compute loss as a metric."""
pred_logits = pred.predictions
labels = pred.label_ids
loss_fn = torch.nn.CrossEntropyLoss()
return {"loss": loss_fn(torch.tensor(pred_logits), torch.tensor(labels)).item()}
def main():
# Initialize WandB if in main process
if int(os.environ.get("LOCAL_RANK", "-1")) == 0:
initialize_wandb()
# Load model and tokenizer
config = MMLMConfig(lm_model_name=LM_MODEL_NAME)
model = MMLM(config)
tokenizer = model.tokenizer
logger.info("Model and tokenizer loaded.")
# Load dataset
data = DATASET
logger.info(f"Loaded {len(data)} samples from dataset.")
data = data.filter(lambda x: x["not_aligned_percentage"] < 0.5)
logger.info(f"Filtered dataset to {len(data)} samples.")
# Split dataset
# data = data.train_test_split(test_size=0.5, seed=42)
data = data.shuffle(seed=42)
subset_size = 100
data = data.select(range(subset_size))
train_dataset = CustomDataset(data, tokenizer)
# eval_dataset = CustomDataset(data['test'], tokenizer)
# train_dataset = CustomDataset(data.select([0, 1, 2, 3, 4]), tokenizer)
# eval_dataset = CustomDataset(data.select([0, 1, 2, 3, 4]), tokenizer)
# Data collator
data_collator = CustomDataCollator(tokenizer.pad_token_id)
# Define training arguments
training_args = TrainingArguments(
output_dir=OUTPUT_DIR,
evaluation_strategy="no",
logging_strategy="steps",
logging_steps=LOGGING_STEPS,
save_strategy="steps",
save_steps=200,
save_total_limit=SAVE_TOTAL_LIMIT,
num_train_epochs=EPOCHS,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
learning_rate=LEARNING_RATE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
bf16=USE_BF16,
fp16=USE_FP16,
do_eval=False,
max_grad_norm=1,
report_to="wandb",
lr_scheduler_type="linear",
warmup_steps=100,
eval_accumulation_steps=1,
run_name=f"{WANDB_PROJECT_NAME}-training",
load_best_model_at_end=False,
gradient_checkpointing=GRADIENT_CHECKPOINTING,
label_names=["listener_text_labels", "speaker_text_labels"],
prediction_loss_only=True,
remove_unused_columns=False,
push_to_hub=True,
)
# Initialize Trainer
trainer = Trainer(
model=model,
processing_class=tokenizer,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
# Train and evaluate model
# resume_from_checkpoint = '/mnt/home/ntuspeechlabtaipei1/mmlm-conv-training-fixed-10k/checkpoint-2000/'
trainer.train()
# Save model
trainer.save_model(MODEL_SAVE_PATH)
logger.info(f"Model and tokenizer saved to '{MODEL_SAVE_PATH}'.")
# Finalize WandB
wandb.finish()
if __name__ == "__main__":
main()
|