File size: 8,893 Bytes
e7affe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import logging

import datasets
from datasets import load_dataset
import torch
from torch.utils.data import Dataset
from transformers import Trainer, TrainingArguments
import wandb

from mmlm.model_full import MMLMConfig, MMLM
from mmlm.utility import load_audio_to_tensor
import numpy as np

# ========================
# Global Configuration
# ========================
WANDB_PROJECT_NAME = "mmlm-conv-full"
WANDB_API_KEY = "0793be66347fa388f401f66cb39fd661452d660d"
DATASET = load_dataset("voidful/all_conv_data_filtered_small")['train']
# DATASET = datasets.load_from_disk("/mnt/home/ntuspeechlabtaipei1/anthony/Soundon-TTS-preprocessing/hf_dialogue_chinese_llama31_70B_user_long_2_with_silence")
LM_MODEL_NAME = "voidful/Llama-3.2-8B-Whisper"
OUTPUT_DIR = "/mnt/home/ntuspeechlabtaipei1/mmlm-conv-training-full"
MODEL_SAVE_PATH = "/mnt/home/ntuspeechlabtaipei1/mmlm-conv-model-full"
TRAIN_TEST_SPLIT_RATIO = 0.1
EPOCHS = 300
BATCH_SIZE = 1
LEARNING_RATE = 8e-4
GRADIENT_ACCUMULATION_STEPS = 2
USE_BF16 = True
USE_FP16 = False
LOGGING_STEPS = 1
SAVE_TOTAL_LIMIT = 10
GRADIENT_CHECKPOINTING = True
PAD_VALUE = 0.0
MAX_LENGTH = 8000

# Setup logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)


def initialize_wandb():
    """Initialize Weights and Biases for tracking experiments."""
    wandb.login(key=WANDB_API_KEY)
    wandb.init(
        project=WANDB_PROJECT_NAME,
        config={
            "epochs": EPOCHS,
            "batch_size": BATCH_SIZE,
            "learning_rate": LEARNING_RATE,
        },
        group="mmlm",
    )

class CustomDataset(Dataset):
    """Custom dataset class for handling audio-text data."""

    def __init__(self, data, tokenizer):
        self.data = data
        self.tokenizer = tokenizer

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        entry = self.data
        # print(len(entry[idx]["user_audio_path"]['array']),entry[idx]["user_audio_path"]['array'])
        audio_path = torch.tensor(entry[idx]["user_audio_path"]['array'])
        # if not os.path.exists(audio_path):
        #     audio_path = os.path.join("/mnt/home/ntuspeechlabtaipei1/anthony/Soundon-TTS-preprocessing/", audio_path)
        audio_tensor = load_audio_to_tensor(audio_path)[0]
        # print("audio_tensor",audio_tensor.shape,)
        x_vector = entry[idx]["x-vector"]
        text_with_pad = entry[idx]["text_with_pad"]
        user_text_with_pad = text_with_pad[0]
        user_text_with_pad = "[PAD]" + user_text_with_pad
        audio_tensor = torch.cat([audio_tensor[0], torch.zeros(int(24000 * 0.08 * 1))], dim=0).unsqueeze(dim=0)
        # machine_text_with_pad = text_with_pad[1]
        machine_text_with_pad = text_with_pad[1][5:] + "[PAD]"
        audio_unit = np.array(entry[idx]["machine_unit"])

        zero_sequences = []  # To store start and end times
        start = None  # Initialize start as None
        for i, value in enumerate(audio_unit[0]):  # Iterate through the first element of the audio tensor
            if value != 0 and start is None:
                start = i  # Start of a zero sequence
            elif value == 0 and start is not None:
                # End of a zero sequence
                zero_sequences.append((start * 24000 * 0.08, (i - 1) * 24000 * 0.08))
                start = None

        # Handle sequence ending at the last element
        if start is not None:
            zero_sequences.append((start * 24000 * 0.08, (len(audio_unit[0]) - 1) * 24000 * 0.08))

        for i in zero_sequences:
            start, end = i
            start, end = int(start), int(end)
            if end > audio_tensor.size(1):
                end = audio_tensor.size(1)
            audio_tensor[0, start:end] = torch.zeros(end - start)

        padding_token = 0
        bos_token_id = 0
        eos_token_id = 0

        audio_unit = np.hstack((audio_unit, np.zeros((audio_unit.shape[0], 1), dtype=int)))
        for i in range(1, audio_unit.shape[0]):
            audio_unit[i, 1:] = audio_unit[i, :-1]
            audio_unit[i, 0] = padding_token

        matrix_with_bos = np.hstack((np.full((audio_unit.shape[0], 1), bos_token_id), audio_unit))
        matrix_with_bos_eos = np.hstack((matrix_with_bos, np.full((matrix_with_bos.shape[0], 1), eos_token_id)))
        input_audio_unit = matrix_with_bos_eos[:, :-1]
        target_audio_unit = matrix_with_bos_eos[:, 1:]

        return {
            "input_values": torch.tensor(audio_tensor),
            "speaker_codecs": torch.tensor(input_audio_unit),
            "speaker_codec_labels": torch.tensor(target_audio_unit),
            "speaker_embs": torch.tensor(x_vector[1]),
            "speaker_texts": self.tokenizer(machine_text_with_pad, add_special_tokens=False, return_tensors="pt")[
                "input_ids"],
            "listener_texts": self.tokenizer(user_text_with_pad, add_special_tokens=False, return_tensors="pt")[
                "input_ids"],
        }



class CustomDataCollator:
    """Custom data collator for batching audio and text inputs."""

    def __init__(self, text_pad_value, audio_pad_value=PAD_VALUE):
        self.text_pad_value = text_pad_value
        self.audio_pad_value = audio_pad_value

    def __call__(self, batch):
        return {
            "input_values": torch.cat([item["input_values"] for item in batch]),
            "speaker_codecs": torch.cat([item["speaker_codecs"] for item in batch]),
            "speaker_codec_labels": torch.cat([item["speaker_codec_labels"] for item in batch]),
            "speaker_embs": torch.cat([item["speaker_embs"] for item in batch]),
            "speaker_texts": torch.cat([item["speaker_texts"] for item in batch]),
            "listener_texts": torch.cat([item["listener_texts"] for item in batch]),
        }


def compute_metrics(pred):
    """Compute loss as a metric."""
    pred_logits = pred.predictions
    labels = pred.label_ids
    loss_fn = torch.nn.CrossEntropyLoss()
    return {"loss": loss_fn(torch.tensor(pred_logits), torch.tensor(labels)).item()}


def main():
    # Initialize WandB if in main process
    if int(os.environ.get("LOCAL_RANK", "-1")) == 0:
        initialize_wandb()

    # Load model and tokenizer
    config = MMLMConfig(lm_model_name=LM_MODEL_NAME)
    model = MMLM(config)
    tokenizer = model.tokenizer
    logger.info("Model and tokenizer loaded.")

    # Load dataset
    data = DATASET
    logger.info(f"Loaded {len(data)} samples from dataset.")
    data = data.filter(lambda x: x["not_aligned_percentage"] < 0.5)
    logger.info(f"Filtered dataset to {len(data)} samples.")

    # Split dataset
    # data = data.train_test_split(test_size=0.5, seed=42)
    data = data.shuffle(seed=42)
    subset_size = 100
    data = data.select(range(subset_size))
    train_dataset = CustomDataset(data, tokenizer)
    # eval_dataset = CustomDataset(data['test'], tokenizer)
    # train_dataset = CustomDataset(data.select([0, 1, 2, 3, 4]), tokenizer)
    # eval_dataset = CustomDataset(data.select([0, 1, 2, 3, 4]), tokenizer)

    # Data collator
    data_collator = CustomDataCollator(tokenizer.pad_token_id)

    # Define training arguments
    training_args = TrainingArguments(
        output_dir=OUTPUT_DIR,
        evaluation_strategy="no",
        logging_strategy="steps",
        logging_steps=LOGGING_STEPS,
        save_strategy="steps",
        save_steps=200,
        save_total_limit=SAVE_TOTAL_LIMIT,
        num_train_epochs=EPOCHS,
        per_device_train_batch_size=BATCH_SIZE,
        per_device_eval_batch_size=BATCH_SIZE,
        learning_rate=LEARNING_RATE,
        gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
        bf16=USE_BF16,
        fp16=USE_FP16,
        do_eval=False,
        max_grad_norm=1,
        report_to="wandb",
        lr_scheduler_type="linear",
        warmup_steps=100,
        eval_accumulation_steps=1,
        run_name=f"{WANDB_PROJECT_NAME}-training",
        load_best_model_at_end=False,
        gradient_checkpointing=GRADIENT_CHECKPOINTING,
        label_names=["listener_text_labels", "speaker_text_labels"],
        prediction_loss_only=True,
        remove_unused_columns=False,
        push_to_hub=True,
    )

    # Initialize Trainer
    trainer = Trainer(
        model=model,
        processing_class=tokenizer,
        args=training_args,
        train_dataset=train_dataset,
        data_collator=data_collator,
        compute_metrics=compute_metrics,
    )

    # Train and evaluate model
    # resume_from_checkpoint = '/mnt/home/ntuspeechlabtaipei1/mmlm-conv-training-fixed-10k/checkpoint-2000/'
    trainer.train()

    # Save model
    trainer.save_model(MODEL_SAVE_PATH)
    logger.info(f"Model and tokenizer saved to '{MODEL_SAVE_PATH}'.")

    # Finalize WandB
    wandb.finish()


if __name__ == "__main__":
    main()