--- language: zh datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week - robust-speech-event license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Cantonese (Hong Kong) by Voidful results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice zh-HK type: common_voice args: zh-HK metrics: - name: Test CER type: cer value: 16.41 --- # Wav2Vec2-Large-XLSR-53-hk Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Cantonese using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage [Colab trial](https://colab.research.google.com/drive/1nBRLf4Pwiply_y5rXWoaIB8LxX41tfEI?usp=sharing) ``` import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys model_name = "voidful/wav2vec2-large-xlsr-53-hk" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-hk" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\\"#$%&()*+,\\-.\\:;<=>?@\\[\\]\\\\\\/^_`{|}~]" model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def load_file_to_data(file): batch = {} speech, _ = torchaudio.load(file) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq return batch def predict(data): features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) return processor.batch_decode(pred_ids) ``` Predict ```python predict(load_file_to_data('voice file path')) ``` ## Evaluation The model can be evaluated as follows on the Cantonese (Hong Kong) test data of Common Voice. CER calculation refer to https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese ```python !mkdir cer !wget -O cer/cer.py https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese/raw/main/cer.py !pip install jiwer import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys cer = load_metric("./cer") model_name = "voidful/wav2vec2-large-xlsr-53-hk" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-hk" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\\"#$%&()*+,\\-.\\:;<=>?@\\[\\]\\\\\\/^_`{|}~]" model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) ds = load_dataset("common_voice", 'zh-HK', data_dir="./cv-corpus-6.1-2020-12-11", split="test") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) print("CER: {:2f}".format(100 * cer.compute(predictions=result["predicted"], references=result["target"]))) ``` `CER 16.41`