voidful
commited on
Commit
•
93533d4
0
Parent(s):
Initial commit
Browse files- .gitattributes +16 -0
- README.md +181 -0
- config.json +76 -0
- feature_extractor_config.json +9 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
.gitattributes
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: zh
|
3 |
+
datasets:
|
4 |
+
- common_voice
|
5 |
+
tags:
|
6 |
+
- speech
|
7 |
+
- audio
|
8 |
+
- automatic-speech-recognition
|
9 |
+
- xlsr_fine_tuning_week
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
12 |
+
|
13 |
+
## Colab trial with recording or voice file
|
14 |
+
[Colab trial](https://colab.research.google.com/drive/1e_z5jQHYbO2YKEaUgzb1ww1WwiAyydAj?usp=sharing)
|
15 |
+
|
16 |
+
```
|
17 |
+
import torchaudio
|
18 |
+
from datasets import load_dataset, load_metric
|
19 |
+
from transformers import (
|
20 |
+
Wav2Vec2ForCTC,
|
21 |
+
Wav2Vec2Processor,
|
22 |
+
)
|
23 |
+
import torch
|
24 |
+
import re
|
25 |
+
import sys
|
26 |
+
|
27 |
+
model_name = "voidful/wav2vec2-large-xlsr-53-tw"
|
28 |
+
device = "cuda"
|
29 |
+
processor_name = "voidful/wav2vec2-large-xlsr-53-tw"
|
30 |
+
|
31 |
+
chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]"
|
32 |
+
|
33 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
|
34 |
+
processor = Wav2Vec2Processor.from_pretrained(processor_name)
|
35 |
+
|
36 |
+
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
|
37 |
+
|
38 |
+
def load_file_to_data(file):
|
39 |
+
batch = {}
|
40 |
+
speech, _ = torchaudio.load(file)
|
41 |
+
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
|
42 |
+
batch["sampling_rate"] = resampler.new_freq
|
43 |
+
return batch
|
44 |
+
|
45 |
+
|
46 |
+
def predict(data):
|
47 |
+
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt")
|
48 |
+
input_values = features.input_values.to(device)
|
49 |
+
attention_mask = features.attention_mask.to(device)
|
50 |
+
with torch.no_grad():
|
51 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
52 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
53 |
+
return processor.batch_decode(pred_ids)
|
54 |
+
|
55 |
+
```
|
56 |
+
|
57 |
+
Predict
|
58 |
+
```python
|
59 |
+
predict(load_file_to_data('voice file path'))
|
60 |
+
```
|
61 |
+
|
62 |
+
## Evaluation on Common Voice TW Test
|
63 |
+
```python
|
64 |
+
import torchaudio
|
65 |
+
from datasets import load_dataset, load_metric
|
66 |
+
from transformers import (
|
67 |
+
Wav2Vec2ForCTC,
|
68 |
+
Wav2Vec2Processor,
|
69 |
+
)
|
70 |
+
import torch
|
71 |
+
import re
|
72 |
+
|
73 |
+
model_name = "voidful/wav2vec2-large-xlsr-53-tw"
|
74 |
+
device = "cuda"
|
75 |
+
processor_name = "voidful/wav2vec2-large-xlsr-53-tw"
|
76 |
+
|
77 |
+
chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]"
|
78 |
+
|
79 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
|
80 |
+
processor = Wav2Vec2Processor.from_pretrained(processor_name)
|
81 |
+
|
82 |
+
ds = load_dataset("common_voice", 'zh-TW', data_dir="./cv-corpus-6.1-2020-12-11", split="test")
|
83 |
+
|
84 |
+
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
|
85 |
+
|
86 |
+
def map_to_array(batch):
|
87 |
+
speech, _ = torchaudio.load(batch["path"])
|
88 |
+
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
|
89 |
+
batch["sampling_rate"] = resampler.new_freq
|
90 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
|
91 |
+
return batch
|
92 |
+
|
93 |
+
ds = ds.map(map_to_array)
|
94 |
+
|
95 |
+
def map_to_pred(batch):
|
96 |
+
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
|
97 |
+
input_values = features.input_values.to(device)
|
98 |
+
attention_mask = features.attention_mask.to(device)
|
99 |
+
with torch.no_grad():
|
100 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
101 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
102 |
+
batch["predicted"] = processor.batch_decode(pred_ids)
|
103 |
+
batch["target"] = batch["sentence"]
|
104 |
+
return batch
|
105 |
+
|
106 |
+
result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))
|
107 |
+
|
108 |
+
wer = load_metric("wer")
|
109 |
+
|
110 |
+
print(wer.compute(predictions=result["predicted"], references=result["target"]))
|
111 |
+
```
|
112 |
+
|
113 |
+
`CER: 0.8635578583765112`
|
114 |
+
|
115 |
+
Inference with GPT LM:
|
116 |
+
```python
|
117 |
+
import torchaudio
|
118 |
+
from datasets import load_dataset, load_metric
|
119 |
+
from transformers import (
|
120 |
+
Wav2Vec2ForCTC,
|
121 |
+
Wav2Vec2Processor,
|
122 |
+
)
|
123 |
+
import torch
|
124 |
+
import re
|
125 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
126 |
+
|
127 |
+
model_name = "voidful/wav2vec2-large-xlsr-53-tw"
|
128 |
+
device = "cuda"
|
129 |
+
processor_name = "voidful/wav2vec2-large-xlsr-53-tw"
|
130 |
+
|
131 |
+
chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞���〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]"
|
132 |
+
|
133 |
+
tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese")
|
134 |
+
gpt_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device)
|
135 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
|
136 |
+
processor = Wav2Vec2Processor.from_pretrained(processor_name)
|
137 |
+
|
138 |
+
ds = load_dataset("common_voice", 'zh-TW', data_dir="./cv-corpus-6.1-2020-12-11", split="test")
|
139 |
+
|
140 |
+
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
|
141 |
+
|
142 |
+
def map_to_array(batch):
|
143 |
+
speech, _ = torchaudio.load(batch["path"])
|
144 |
+
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
|
145 |
+
batch["sampling_rate"] = resampler.new_freq
|
146 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
|
147 |
+
return batch
|
148 |
+
|
149 |
+
ds = ds.map(map_to_array)
|
150 |
+
|
151 |
+
def map_to_pred(batch):
|
152 |
+
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
|
153 |
+
input_values = features.input_values.to(device)
|
154 |
+
attention_mask = features.attention_mask.to(device)
|
155 |
+
with torch.no_grad():
|
156 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
157 |
+
|
158 |
+
decoded_results = []
|
159 |
+
for logit in logits:
|
160 |
+
pred_ids = torch.argmax(logit, dim=-1)
|
161 |
+
mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size())
|
162 |
+
vocab_size = logit.size()[-1]
|
163 |
+
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
|
164 |
+
gpt_input = torch.cat((torch.tensor([tokenizer.cls_token_id]).to(device),pred_ids[pred_ids>0]), 0)
|
165 |
+
gpt_prob = torch.nn.functional.softmax(gpt_model(gpt_input).logits, dim=-1)[:voice_prob.size()[0],:]
|
166 |
+
comb_pred_ids = torch.argmax(gpt_prob*voice_prob, dim=-1)
|
167 |
+
decoded_results.append(processor.decode(comb_pred_ids))
|
168 |
+
|
169 |
+
batch["predicted"] = decoded_results
|
170 |
+
batch["target"] = batch["sentence"]
|
171 |
+
return batch
|
172 |
+
|
173 |
+
|
174 |
+
result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))
|
175 |
+
|
176 |
+
wer = load_metric("wer")
|
177 |
+
|
178 |
+
print(wer.compute(predictions=result["predicted"], references=result["target"]))
|
179 |
+
```
|
180 |
+
|
181 |
+
`CER 0.7927461139896373`
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": false,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.0,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"gradient_checkpointing": true,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.1,
|
50 |
+
"hidden_size": 1024,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 4096,
|
53 |
+
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.1,
|
55 |
+
"mask_channel_length": 10,
|
56 |
+
"mask_channel_min_space": 1,
|
57 |
+
"mask_channel_other": 0.0,
|
58 |
+
"mask_channel_prob": 0.0,
|
59 |
+
"mask_channel_selection": "static",
|
60 |
+
"mask_feature_length": 10,
|
61 |
+
"mask_feature_prob": 0.0,
|
62 |
+
"mask_time_length": 10,
|
63 |
+
"mask_time_min_space": 1,
|
64 |
+
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.05,
|
66 |
+
"mask_time_selection": "static",
|
67 |
+
"model_type": "wav2vec2",
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_conv_pos_embedding_groups": 16,
|
70 |
+
"num_conv_pos_embeddings": 128,
|
71 |
+
"num_feat_extract_layers": 7,
|
72 |
+
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 0,
|
74 |
+
"transformers_version": "4.4.0.dev0",
|
75 |
+
"vocab_size": 21128
|
76 |
+
}
|
feature_extractor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
9 |
+
|
preprocessor_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80b6393d293991d01b78ee9219ad2a32d65cb30f33433491a795de7879322b8a
|
3 |
+
size 1348554373
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "pad_token": "[PAD]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": null, "eos_token": null, "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|