--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-nonstudio_and_studioRecords results: [] --- # w2v-bert-2.0-nonstudio_and_studioRecords This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1642 - Wer: 0.1271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0788 | 0.46 | 600 | 0.3546 | 0.4640 | | 0.1732 | 0.92 | 1200 | 0.2307 | 0.3431 | | 0.1247 | 1.38 | 1800 | 0.2097 | 0.2916 | | 0.1092 | 1.84 | 2400 | 0.2121 | 0.2742 | | 0.0896 | 2.3 | 3000 | 0.1817 | 0.2565 | | 0.0776 | 2.76 | 3600 | 0.1715 | 0.2249 | | 0.0695 | 3.22 | 4200 | 0.1684 | 0.2142 | | 0.0581 | 3.68 | 4800 | 0.1667 | 0.2050 | | 0.0521 | 4.14 | 5400 | 0.1629 | 0.1876 | | 0.0426 | 4.6 | 6000 | 0.1553 | 0.1819 | | 0.0389 | 5.06 | 6600 | 0.1485 | 0.1692 | | 0.03 | 5.52 | 7200 | 0.1388 | 0.1667 | | 0.03 | 5.98 | 7800 | 0.1441 | 0.1607 | | 0.0208 | 6.44 | 8400 | 0.1444 | 0.1520 | | 0.0209 | 6.9 | 9000 | 0.1339 | 0.1498 | | 0.0145 | 7.36 | 9600 | 0.1418 | 0.1403 | | 0.013 | 7.82 | 10200 | 0.1387 | 0.1351 | | 0.0103 | 8.28 | 10800 | 0.1504 | 0.1321 | | 0.0079 | 8.74 | 11400 | 0.1593 | 0.1331 | | 0.0066 | 9.2 | 12000 | 0.1551 | 0.1222 | | 0.004 | 9.66 | 12600 | 0.1642 | 0.1271 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1