Transformers
Safetensors
Inference Endpoints
jzhoubu commited on
Commit
ced11e6
1 Parent(s): b6ae422

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -158
README.md CHANGED
@@ -1,199 +1,145 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
49
 
50
- [More Information Needed]
 
 
51
 
52
- ### Out-of-Scope Use
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
55
 
56
- [More Information Needed]
 
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
69
 
70
- ## How to Get Started with the Model
 
 
 
 
 
71
 
72
- Use the code below to get started with the model.
 
 
 
73
 
74
- [More Information Needed]
 
 
 
 
 
75
 
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - google-research-datasets/natural_questions
6
+ base_model:
7
+ - google-bert/bert-base-uncased
8
  ---
9
 
10
+ # svdr-nq
11
 
12
+ Semi-Parametric Retrieval via Binary Token Index. Jiawei Zhou, Li Dong, Furu Wei, Lei Chen, arXiv 2024
13
 
14
+ The model is BERT-based with 12 layers and an embedding size of 20,523, derived from the BERT vocabulary of 30,522 with 999 unused tokens excluded.
15
 
16
 
17
+ ## Quick Start
18
 
19
+ Download and install `vsearch` repo:
20
 
21
+ ```
22
+ git clone git@github.com:jzhoubu/vsearch.git
23
+ poetry install
24
+ poetry shell
25
+ ```
26
 
27
+ Below is an example to encode queries and passages and compute similarity.
28
 
29
+ ```python
30
+ import torch
31
+ from src.ir import Retriever
 
 
 
 
32
 
33
+ query = "Who first proposed the theory of relativity?"
34
+ passages = [
35
+ "Albert Einstein (14 March 1879 – 18 April 1955) was a German-born theoretical physicist who is widely held to be one of the greatest and most influential scientists of all time. He is best known for developing the theory of relativity.",
36
+ "Sir Isaac Newton FRS (25 December 1642 – 20 March 1727) was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author who was described in his time as a natural philosopher.",
37
+ "Nikola Tesla (10 July 1856 – 7 January 1943) was a Serbian-American inventor, electrical engineer, mechanical engineer, and futurist. He is known for his contributions to the design of the modern alternating current (AC) electricity supply system."
38
+ ]
39
 
40
+ ir = Retriever.from_pretrained("vsearch/svdr-nq")
41
+ ir = ir.to("cuda")
42
 
43
+ # Embed the query and passages
44
+ q_emb = ir.encoder_q.embed(query) # Shape: [1, V]
45
+ p_emb = ir.encoder_p.embed(passages) # Shape: [4, V]
46
 
47
+ scores = q_emb @ p_emb.t()
48
+ print(scores)
49
 
50
+ # Output:
51
+ tensor([[61.5432, 10.3108, 8.6709]], device='cuda:0')
52
+ ```
53
 
 
54
 
55
+ ## Building Embedding-based Index for Search
56
 
57
+ Below are examples to build index for large-scale retrieval
58
 
59
+ ```python
60
+ # Build the sparse index for the passages
61
+ ir.build_index(passages, index_type="sparse")
62
+ print(ir.index)
63
 
64
+ # Output:
65
+ # Index Type : SparseIndex
66
+ # Vector Type : torch.sparse_csr
67
+ # Vector Shape : torch.Size([3, 29523])
68
+ # Vector Device : cuda:0
69
+ # Number of Texts : 3
70
 
71
+ # Save the index to disk
72
+ index_file = "/path/to/index.npz"
73
+ ir.save_index(path)
74
 
75
+ # Load the index from disk
76
+ index_file = "/path/to/index.npz"
77
+ data_file = "/path/to/texts.jsonl"
78
+ ir.load_index(index_file=index_file, data_file=data_file)
79
 
80
+ # Search top-k results for queries
81
+ queries = [query]
82
+ results = ir.retrieve(queries, k=3)
83
+ print(results)
84
 
85
+ # Output:
86
+ # SearchResults(
87
+ # ids=tensor([[0, 1, 2]], device='cuda:0'),
88
+ # scores=tensor([[97.2458, 39.7507, 37.6407]], device='cuda:0')
89
+ # )
90
 
91
+ query_id = 0
92
+ top1_psg_id = results.ids[query_id][0]
93
+ top1_psg = ir.index.get_sample(top1_psg_id)
94
+ print(top1_psg)
95
+ # Output:
96
 
97
+ # Albert Einstein (14 March 1879 – 18 April 1955) was a German-born theoretical physicist who is widely held to be one of the greatest and most influential scientists of all time. He is best known for developing the theory of relativity.
98
 
99
+ ```
100
 
101
+ ## Building Bag-of-token Index for Search
102
 
103
+ Our framework supports using tokenization as an index (i.e., a bag-of-token index), which operates on CPU and reduces indexing time and storage requirements by over 90%, compare to an embedding-based index.
104
 
105
+ ```python
106
+ # Build the bag-of-token index for the passages
107
+ ir.build_index(passages, index_type="bag_of_token")
108
+ print(ir.index)
109
 
110
+ # Output:
111
+ # Index Type : BoTIndex
112
+ # Vector Type : torch.sparse_csr
113
+ # Vector Shape : torch.Size([3, 29523])
114
+ # Vector Device : cuda:0
115
+ # Number of Texts : 3
116
 
117
+ # Search top-k results from bag-of-token index, and embed and rerank them on-the-fly
118
+ queries = [query]
119
+ results = ir.retrieve(queries, k=3, rerank=True)
120
+ print(results)
121
 
122
+ # Output:
123
+ # SearchResults(
124
+ # ids=tensor([0, 2, 1], device='cuda:3'),
125
+ # scores=tensor([97.2964, 39.7844, 37.6955], device='cuda:0')
126
+ # )
127
+ ```
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
+ ## Training Details
131
 
132
+ Please refer to our paper at [https://arxiv.org/pdf/2405.01924](https://arxiv.org/pdf/2405.01924).
133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
 
 
135
 
136
+ ## Citation
137
+ If you find our paper or models helpful, please consider cite as follows:
138
+ ```
139
+ @article{zhou2024semi,
140
+ title={Semi-Parametric Retrieval via Binary Token Index},
141
+ author={Zhou, Jiawei and Dong, Li and Wei, Furu and Chen, Lei},
142
+ journal={arXiv preprint arXiv:2405.01924},
143
+ year={2024}
144
+ }
145
+ ```