VikramTiwari commited on
Commit
f2ca1eb
1 Parent(s): 1b5cfca
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -188.62 +/- 33.72
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f267b744050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f267b7440e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f267b744170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f267b744200>", "_build": "<function ActorCriticPolicy._build at 0x7f267b744290>", "forward": "<function ActorCriticPolicy.forward at 0x7f267b744320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f267b7443b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f267b744440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f267b7444d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f267b744560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f267b7445f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f267b78da50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 229376, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651719611.9308708, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKgEFb86h+C9GGpxveR88r5Zp0i+FOISvgAAAAAAAAAAq52WvjrhNz8+7D++ETZmvqMHlTzm+hK8AAAAAAAAAAAA2iS8Cnc/ubIZND08lysz0l0vu0XyTzMAAIA/AACAP7BKqz7G52g/CSzKPq7Kgb7wmzs+TvLQPAAAAAAAAAAALXa/PiXSJj9agMA+gT9uvqVm0z19vU4+AAAAAAAAAACanRA/B4eIvWq1cT5w86y+swPbPHJbuDwAAAAAAAAAABCVlT7XGks8Oc8JOzxaAj3Biqo9NQxLPAAAgD8AAIA/2vb8PeGMgDvMFLU8fSYlPcXBajzcgKe8AAAAAAAAAACmLnI+WWYNPz4DQz4N4he/6IVfvQ/1FT0AAAAAAAAAACPBGj84ybG9csbWvRxSx72mN9E9W2T0PgAAgD8AAAAACmu7PttqJT91Ohg/zJoXv/RzHD4LV4o8AAAAAAAAAACTimU+fuXbPjHnqjp7VQW+dMUFvVKg6r0AAAAAAAAAAKDeET6U67E7SB/mPIAfxzpJkTw80ieKvQAAAAAAAAAAM4UpPTWNRj+eQU+9sbnIvnpl4D058bG9AAAAAAAAAADiGRq/MF28vbaRnTyWowW+3PMEvF0pAL4AAAAAAAAAALbKLz8CsZS9lqKHPlZtlr2w6ou+LVdPvgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItRX7y+55LUCUhpRSlIwBbJRL1owBdJRHQHr0vIsAeaN1fZQoaAZoCWgPQwhSDmYTYPpBwJSGlFKUaBVLgWgWR0B69c35vcagdX2UKGgGaAloD0MIGcizy7eGIUCUhpRSlGgVS2poFkdAevrRQJokA3V9lChoBmgJaA9DCCr/Wl65ngpAlIaUUpRoFUuwaBZHQHr8aEzwc5t1fZQoaAZoCWgPQwh64c6FkfJGwJSGlFKUaBVLnWgWR0B6/NLTQVsUdX2UKGgGaAloD0MIO/w1WaN+N0CUhpRSlGgVS2loFkdAevzYzi0fHXV9lChoBmgJaA9DCGvSbYlcGEXAlIaUUpRoFUubaBZHQHr/EPMB6rx1fZQoaAZoCWgPQwiOrtLdddYOwJSGlFKUaBVLs2gWR0B9mBBC2MKkdX2UKGgGaAloD0MIINEEilhwP8CUhpRSlGgVS3doFkdAfZg6guh9LHV9lChoBmgJaA9DCMk7hzJUrUfAlIaUUpRoFUuRaBZHQH2fJ4bCJoF1fZQoaAZoCWgPQwgAyt+9o8I7wJSGlFKUaBVL2mgWR0B9pIKc/dIodX2UKGgGaAloD0MIbEJaY9A9MECUhpRSlGgVS4FoFkdAfasz/6wdKnV9lChoBmgJaA9DCGgHXFfMekHAlIaUUpRoFUt+aBZHQH2svRRdhRZ1fZQoaAZoCWgPQwj3yOaqef4pwJSGlFKUaBVN6ANoFkdAfa2gZjx0+3V9lChoBmgJaA9DCPM9IxEaU0HAlIaUUpRoFUvQaBZHQH3C9qUNayN1fZQoaAZoCWgPQwjS4SGMnzpPwJSGlFKUaBVLzGgWR0B9xKE6DGtIdX2UKGgGaAloD0MIXoO+9PZnSsCUhpRSlGgVTSUBaBZHQH3Fl4X40uV1fZQoaAZoCWgPQwhpyeNp+VdNwJSGlFKUaBVNVAFoFkdAfcXXtBv733V9lChoBmgJaA9DCG4w1GGFl0hAlIaUUpRoFUuiaBZHQH3Jv7m+0w91fZQoaAZoCWgPQwgdIJijx0VAwJSGlFKUaBVNNAFoFkdAfc3TpgTh53V9lChoBmgJaA9DCKJe8GlOPhTAlIaUUpRoFUvzaBZHQH3N3OW0JF91fZQoaAZoCWgPQwhcjexKy+5cwJSGlFKUaBVNDgFoFkdAfc4T8pCrtHV9lChoBmgJaA9DCAirsYQ1KGDAlIaUUpRoFUvqaBZHQH3TmIwdsBR1fZQoaAZoCWgPQwg6kst/SJNPwJSGlFKUaBVNYQFoFkdAfdlCW/rSmnV9lChoBmgJaA9DCCBCXDl7W0HAlIaUUpRoFUuaaBZHQH3o+O801qF1fZQoaAZoCWgPQwhxdmuZDIcPwJSGlFKUaBVNBAFoFkdAfeoPWhAWznV9lChoBmgJaA9DCMN/uoECdzvAlIaUUpRoFUuxaBZHQH3tebqhUR51fZQoaAZoCWgPQwhMM93rpFYqwJSGlFKUaBVLuWgWR0B97cWsRxtIdX2UKGgGaAloD0MIBTbn4Jk9VsCUhpRSlGgVTSwBaBZHQH3xCe7L+xZ1fZQoaAZoCWgPQwijAbwFErw/QJSGlFKUaBVLlWgWR0B99rsrupjudX2UKGgGaAloD0MInkFD/wTVT8CUhpRSlGgVS9poFkdAffg94/u9e3V9lChoBmgJaA9DCLKhm/2BUjvAlIaUUpRoFUvJaBZHQH34exjawll1fZQoaAZoCWgPQwh2a5kMx6skwJSGlFKUaBVLu2gWR0B9+ZVhkRSQdX2UKGgGaAloD0MIQN1AgXdES8CUhpRSlGgVS7hoFkdAfgVk92X9i3V9lChoBmgJaA9DCOSByCJNrEZAlIaUUpRoFU3oA2gWR0B+DqD28IzFdX2UKGgGaAloD0MITmTmApchYMCUhpRSlGgVTRcBaBZHQH4RPWQOnVJ1fZQoaAZoCWgPQwi6MT1hiRxewJSGlFKUaBVNLgFoFkdAfhYdCVrylXV9lChoBmgJaA9DCCgtXFZhjFHAlIaUUpRoFUuraBZHQH4XrJGOMl11fZQoaAZoCWgPQwjJIk28A6Q3QJSGlFKUaBVLomgWR0B+HobR4QjEdX2UKGgGaAloD0MIQdR9AFIDLcCUhpRSlGgVS9NoFkdAfiSgmZ3LWHV9lChoBmgJaA9DCCrG+ZtQYlJAlIaUUpRoFU3oA2gWR0B+KKYLLIPtdX2UKGgGaAloD0MIv/BKkucePcCUhpRSlGgVS9RoFkdAfizDPnjhk3V9lChoBmgJaA9DCHI1sisthUHAlIaUUpRoFUvTaBZHQH4tasMiKSB1fZQoaAZoCWgPQwiDiNS0i+kzwJSGlFKUaBVLtmgWR0B+OdlJ6IFedX2UKGgGaAloD0MISfJc34fTFUCUhpRSlGgVTVIBaBZHQH5AO45Lh751fZQoaAZoCWgPQwiR8L2/QZsowJSGlFKUaBVLp2gWR0B+QH7VJ+UhdX2UKGgGaAloD0MIT3eeeE44YcCUhpRSlGgVTQ0BaBZHQH5HOby6MBJ1fZQoaAZoCWgPQwj8Gd6swdM2QJSGlFKUaBVLwGgWR0B+TfL6k691dX2UKGgGaAloD0MIiQyreCPDQcCUhpRSlGgVS7doFkdAflX9lmOENHV9lChoBmgJaA9DCPvL7snDAkTAlIaUUpRoFUvbaBZHQH5lSEQGwA51fZQoaAZoCWgPQwhxrfawF5JCwJSGlFKUaBVL5WgWR0B+aUq5LAYYdX2UKGgGaAloD0MIDVLwFHLJSsCUhpRSlGgVS6doFkdAfm3bCJoCdXV9lChoBmgJaA9DCN+Hg4QonwtAlIaUUpRoFUvQaBZHQH5zIxcmjTN1fZQoaAZoCWgPQwgCDTZ1HutFwJSGlFKUaBVLnWgWR0B+c8lHBk7PdX2UKGgGaAloD0MIMnOBy2OhQMCUhpRSlGgVS69oFkdAfoGuHN5dGHV9lChoBmgJaA9DCFUzaykgUTBAlIaUUpRoFUuQaBZHQH6Bvkiliz91fZQoaAZoCWgPQwhSRIZVvP1jwJSGlFKUaBVNngFoFkdAfoT/pMYdhnV9lChoBmgJaA9DCFxaDYl7uENAlIaUUpRoFU3oA2gWR0B+ikfQrtmddX2UKGgGaAloD0MItfzAVZ6+Q8CUhpRSlGgVS5doFkdAfqKoHs1KoXV9lChoBmgJaA9DCHyakxeZwPW/lIaUUpRoFUuNaBZHQH6uBL5AQg91fZQoaAZoCWgPQwinBprPuYRVwJSGlFKUaBVN4wFoFkdAfq4hRZU1h3V9lChoBmgJaA9DCMuCiT+KMj7AlIaUUpRoFUvXaBZHQH6xkHyEtd11fZQoaAZoCWgPQwhYVwVqMTggQJSGlFKUaBVN6ANoFkdAfrJDmKZUk3V9lChoBmgJaA9DCLPsSWBzrglAlIaUUpRoFUukaBZHQH60+pjtoi91fZQoaAZoCWgPQwjEBgsnadJNwJSGlFKUaBVL+WgWR0B+tvGn4wh4dX2UKGgGaAloD0MIqySyD7K0O8CUhpRSlGgVS81oFkdAfsOeZXuE3HV9lChoBmgJaA9DCP27PnPWtxLAlIaUUpRoFU0WAWgWR0B+yDlQuVX4dX2UKGgGaAloD0MIysNCrWk+FUCUhpRSlGgVS2BoFkdAfsmmixmkFnV9lChoBmgJaA9DCKM883JYCGXAlIaUUpRoFU1QAWgWR0B+8VwT/Q0GdX2UKGgGaAloD0MIBcO5hpmpZsCUhpRSlGgVTccDaBZHQH73HXZoPCl1fZQoaAZoCWgPQwiLUGwFTbc3wJSGlFKUaBVNBwFoFkdAfv7O4G2TgXV9lChoBmgJaA9DCGK+vAD7gVHAlIaUUpRoFU0KAWgWR0B/A1hkRSP2dX2UKGgGaAloD0MIZK2h1F4oM0CUhpRSlGgVTegDaBZHQH8DcDbJwKl1fZQoaAZoCWgPQwgmqyLcZOZaQJSGlFKUaBVN6ANoFkdAfxZPnB+F13V9lChoBmgJaA9DCBkg0QSKcEDAlIaUUpRoFU0zAWgWR0B/Fp/c32mIdX2UKGgGaAloD0MI7URJSKRpMsCUhpRSlGgVTQcBaBZHQH8W1fzBhx51fZQoaAZoCWgPQwhv2SH+YQsPQJSGlFKUaBVLi2gWR0B/HX+cYqG2dX2UKGgGaAloD0MIQIf58gKRWMCUhpRSlGgVTXMBaBZHQH8jszhxYJV1fZQoaAZoCWgPQwgUz9kCQpMwwJSGlFKUaBVLomgWR0B/Lovg3tKJdX2UKGgGaAloD0MIMbJkjuXdFkCUhpRSlGgVTegDaBZHQH8xEE5hjON1fZQoaAZoCWgPQwiRCmMLQeI5wJSGlFKUaBVLqGgWR0B/M6JAMUh3dX2UKGgGaAloD0MIz9csl40uRMCUhpRSlGgVS+hoFkdAfznaJQ+EAnV9lChoBmgJaA9DCFzGTQ00/y5AlIaUUpRoFUuHaBZHQH9FqUA1ejV1fZQoaAZoCWgPQwja5Vsf1rZRwJSGlFKUaBVNDAFoFkdAf0yOR1X/53V9lChoBmgJaA9DCApoImx4ajvAlIaUUpRoFUvQaBZHQH9TfzJ6po91fZQoaAZoCWgPQwjtYS8UsApUQJSGlFKUaBVN6ANoFkdAf2UaxX4j8nV9lChoBmgJaA9DCF5jl6jePEPAlIaUUpRoFUvOaBZHQH9n/3evZAZ1fZQoaAZoCWgPQwj0M/W6RaQ6wJSGlFKUaBVLwWgWR0B/b08wHqu9dX2UKGgGaAloD0MIB13CobclVMCUhpRSlGgVTQkBaBZHQH99ekLx7Rh1fZQoaAZoCWgPQwgvpMNDGK8dwJSGlFKUaBVLl2gWR0B/gPOQhfShdX2UKGgGaAloD0MIeQH20akxZsCUhpRSlGgVTUgBaBZHQH+LpemelKt1fZQoaAZoCWgPQwilLa7xmYwLwJSGlFKUaBVL1GgWR0B/jOpZOi35dX2UKGgGaAloD0MIF7ZmKy8XRMCUhpRSlGgVS2NoFkdAf482cawUxnV9lChoBmgJaA9DCJ/jo8UZ/llAlIaUUpRoFU3oA2gWR0B/kH9m6GxmdX2UKGgGaAloD0MIMq8jDtnbUcCUhpRSlGgVTQ0BaBZHQH+WkutfXwt1fZQoaAZoCWgPQwj1vBsLCodEQJSGlFKUaBVLu2gWR0B/oiPn0TURdX2UKGgGaAloD0MIi8Iuih6mRsCUhpRSlGgVS8VoFkdAf6Iwosqaw3V9lChoBmgJaA9DCCjS/ZyCSEvAlIaUUpRoFUuqaBZHQH+1n+yZ8a51fZQoaAZoCWgPQwhIGtzWFo4fQJSGlFKUaBVLi2gWR0B/tf6k690zdX2UKGgGaAloD0MIpyOAm8UZUMCUhpRSlGgVS8NoFkdAf7otU4rBkHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e5d1a60219b43074c3a742160b569ffda10378ccb7c42f3a51faa77ab374601
3
+ size 149991
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -188.62148933728167, "std_reward": 33.724895072605186, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T03:15:17.388844"}
rl-course-unit-1-ppo-lunarlander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2e010c23d4610670f0f8dc7b922030da29a747909ac64516012c7983299f05a
3
+ size 143960
rl-course-unit-1-ppo-lunarlander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
rl-course-unit-1-ppo-lunarlander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f267b744050>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f267b7440e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f267b744170>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f267b744200>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f267b744290>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f267b744320>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f267b7443b0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f267b744440>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f267b7444d0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f267b744560>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f267b7445f0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f267b78da50>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 229376,
46
+ "_total_timesteps": 200000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651719611.9308708,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKgEFb86h+C9GGpxveR88r5Zp0i+FOISvgAAAAAAAAAAq52WvjrhNz8+7D++ETZmvqMHlTzm+hK8AAAAAAAAAAAA2iS8Cnc/ubIZND08lysz0l0vu0XyTzMAAIA/AACAP7BKqz7G52g/CSzKPq7Kgb7wmzs+TvLQPAAAAAAAAAAALXa/PiXSJj9agMA+gT9uvqVm0z19vU4+AAAAAAAAAACanRA/B4eIvWq1cT5w86y+swPbPHJbuDwAAAAAAAAAABCVlT7XGks8Oc8JOzxaAj3Biqo9NQxLPAAAgD8AAIA/2vb8PeGMgDvMFLU8fSYlPcXBajzcgKe8AAAAAAAAAACmLnI+WWYNPz4DQz4N4he/6IVfvQ/1FT0AAAAAAAAAACPBGj84ybG9csbWvRxSx72mN9E9W2T0PgAAgD8AAAAACmu7PttqJT91Ohg/zJoXv/RzHD4LV4o8AAAAAAAAAACTimU+fuXbPjHnqjp7VQW+dMUFvVKg6r0AAAAAAAAAAKDeET6U67E7SB/mPIAfxzpJkTw80ieKvQAAAAAAAAAAM4UpPTWNRj+eQU+9sbnIvnpl4D058bG9AAAAAAAAAADiGRq/MF28vbaRnTyWowW+3PMEvF0pAL4AAAAAAAAAALbKLz8CsZS9lqKHPlZtlr2w6ou+LVdPvgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.1468799999999999,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItRX7y+55LUCUhpRSlIwBbJRL1owBdJRHQHr0vIsAeaN1fZQoaAZoCWgPQwhSDmYTYPpBwJSGlFKUaBVLgWgWR0B69c35vcagdX2UKGgGaAloD0MIGcizy7eGIUCUhpRSlGgVS2poFkdAevrRQJokA3V9lChoBmgJaA9DCCr/Wl65ngpAlIaUUpRoFUuwaBZHQHr8aEzwc5t1fZQoaAZoCWgPQwh64c6FkfJGwJSGlFKUaBVLnWgWR0B6/NLTQVsUdX2UKGgGaAloD0MIO/w1WaN+N0CUhpRSlGgVS2loFkdAevzYzi0fHXV9lChoBmgJaA9DCGvSbYlcGEXAlIaUUpRoFUubaBZHQHr/EPMB6rx1fZQoaAZoCWgPQwiOrtLdddYOwJSGlFKUaBVLs2gWR0B9mBBC2MKkdX2UKGgGaAloD0MIINEEilhwP8CUhpRSlGgVS3doFkdAfZg6guh9LHV9lChoBmgJaA9DCMk7hzJUrUfAlIaUUpRoFUuRaBZHQH2fJ4bCJoF1fZQoaAZoCWgPQwgAyt+9o8I7wJSGlFKUaBVL2mgWR0B9pIKc/dIodX2UKGgGaAloD0MIbEJaY9A9MECUhpRSlGgVS4FoFkdAfasz/6wdKnV9lChoBmgJaA9DCGgHXFfMekHAlIaUUpRoFUt+aBZHQH2svRRdhRZ1fZQoaAZoCWgPQwj3yOaqef4pwJSGlFKUaBVN6ANoFkdAfa2gZjx0+3V9lChoBmgJaA9DCPM9IxEaU0HAlIaUUpRoFUvQaBZHQH3C9qUNayN1fZQoaAZoCWgPQwjS4SGMnzpPwJSGlFKUaBVLzGgWR0B9xKE6DGtIdX2UKGgGaAloD0MIXoO+9PZnSsCUhpRSlGgVTSUBaBZHQH3Fl4X40uV1fZQoaAZoCWgPQwhpyeNp+VdNwJSGlFKUaBVNVAFoFkdAfcXXtBv733V9lChoBmgJaA9DCG4w1GGFl0hAlIaUUpRoFUuiaBZHQH3Jv7m+0w91fZQoaAZoCWgPQwgdIJijx0VAwJSGlFKUaBVNNAFoFkdAfc3TpgTh53V9lChoBmgJaA9DCKJe8GlOPhTAlIaUUpRoFUvzaBZHQH3N3OW0JF91fZQoaAZoCWgPQwhcjexKy+5cwJSGlFKUaBVNDgFoFkdAfc4T8pCrtHV9lChoBmgJaA9DCAirsYQ1KGDAlIaUUpRoFUvqaBZHQH3TmIwdsBR1fZQoaAZoCWgPQwg6kst/SJNPwJSGlFKUaBVNYQFoFkdAfdlCW/rSmnV9lChoBmgJaA9DCCBCXDl7W0HAlIaUUpRoFUuaaBZHQH3o+O801qF1fZQoaAZoCWgPQwhxdmuZDIcPwJSGlFKUaBVNBAFoFkdAfeoPWhAWznV9lChoBmgJaA9DCMN/uoECdzvAlIaUUpRoFUuxaBZHQH3tebqhUR51fZQoaAZoCWgPQwhMM93rpFYqwJSGlFKUaBVLuWgWR0B97cWsRxtIdX2UKGgGaAloD0MIBTbn4Jk9VsCUhpRSlGgVTSwBaBZHQH3xCe7L+xZ1fZQoaAZoCWgPQwijAbwFErw/QJSGlFKUaBVLlWgWR0B99rsrupjudX2UKGgGaAloD0MInkFD/wTVT8CUhpRSlGgVS9poFkdAffg94/u9e3V9lChoBmgJaA9DCLKhm/2BUjvAlIaUUpRoFUvJaBZHQH34exjawll1fZQoaAZoCWgPQwh2a5kMx6skwJSGlFKUaBVLu2gWR0B9+ZVhkRSQdX2UKGgGaAloD0MIQN1AgXdES8CUhpRSlGgVS7hoFkdAfgVk92X9i3V9lChoBmgJaA9DCOSByCJNrEZAlIaUUpRoFU3oA2gWR0B+DqD28IzFdX2UKGgGaAloD0MITmTmApchYMCUhpRSlGgVTRcBaBZHQH4RPWQOnVJ1fZQoaAZoCWgPQwi6MT1hiRxewJSGlFKUaBVNLgFoFkdAfhYdCVrylXV9lChoBmgJaA9DCCgtXFZhjFHAlIaUUpRoFUuraBZHQH4XrJGOMl11fZQoaAZoCWgPQwjJIk28A6Q3QJSGlFKUaBVLomgWR0B+HobR4QjEdX2UKGgGaAloD0MIQdR9AFIDLcCUhpRSlGgVS9NoFkdAfiSgmZ3LWHV9lChoBmgJaA9DCCrG+ZtQYlJAlIaUUpRoFU3oA2gWR0B+KKYLLIPtdX2UKGgGaAloD0MIv/BKkucePcCUhpRSlGgVS9RoFkdAfizDPnjhk3V9lChoBmgJaA9DCHI1sisthUHAlIaUUpRoFUvTaBZHQH4tasMiKSB1fZQoaAZoCWgPQwiDiNS0i+kzwJSGlFKUaBVLtmgWR0B+OdlJ6IFedX2UKGgGaAloD0MISfJc34fTFUCUhpRSlGgVTVIBaBZHQH5AO45Lh751fZQoaAZoCWgPQwiR8L2/QZsowJSGlFKUaBVLp2gWR0B+QH7VJ+UhdX2UKGgGaAloD0MIT3eeeE44YcCUhpRSlGgVTQ0BaBZHQH5HOby6MBJ1fZQoaAZoCWgPQwj8Gd6swdM2QJSGlFKUaBVLwGgWR0B+TfL6k691dX2UKGgGaAloD0MIiQyreCPDQcCUhpRSlGgVS7doFkdAflX9lmOENHV9lChoBmgJaA9DCPvL7snDAkTAlIaUUpRoFUvbaBZHQH5lSEQGwA51fZQoaAZoCWgPQwhxrfawF5JCwJSGlFKUaBVL5WgWR0B+aUq5LAYYdX2UKGgGaAloD0MIDVLwFHLJSsCUhpRSlGgVS6doFkdAfm3bCJoCdXV9lChoBmgJaA9DCN+Hg4QonwtAlIaUUpRoFUvQaBZHQH5zIxcmjTN1fZQoaAZoCWgPQwgCDTZ1HutFwJSGlFKUaBVLnWgWR0B+c8lHBk7PdX2UKGgGaAloD0MIMnOBy2OhQMCUhpRSlGgVS69oFkdAfoGuHN5dGHV9lChoBmgJaA9DCFUzaykgUTBAlIaUUpRoFUuQaBZHQH6Bvkiliz91fZQoaAZoCWgPQwhSRIZVvP1jwJSGlFKUaBVNngFoFkdAfoT/pMYdhnV9lChoBmgJaA9DCFxaDYl7uENAlIaUUpRoFU3oA2gWR0B+ikfQrtmddX2UKGgGaAloD0MItfzAVZ6+Q8CUhpRSlGgVS5doFkdAfqKoHs1KoXV9lChoBmgJaA9DCHyakxeZwPW/lIaUUpRoFUuNaBZHQH6uBL5AQg91fZQoaAZoCWgPQwinBprPuYRVwJSGlFKUaBVN4wFoFkdAfq4hRZU1h3V9lChoBmgJaA9DCMuCiT+KMj7AlIaUUpRoFUvXaBZHQH6xkHyEtd11fZQoaAZoCWgPQwhYVwVqMTggQJSGlFKUaBVN6ANoFkdAfrJDmKZUk3V9lChoBmgJaA9DCLPsSWBzrglAlIaUUpRoFUukaBZHQH60+pjtoi91fZQoaAZoCWgPQwjEBgsnadJNwJSGlFKUaBVL+WgWR0B+tvGn4wh4dX2UKGgGaAloD0MIqySyD7K0O8CUhpRSlGgVS81oFkdAfsOeZXuE3HV9lChoBmgJaA9DCP27PnPWtxLAlIaUUpRoFU0WAWgWR0B+yDlQuVX4dX2UKGgGaAloD0MIysNCrWk+FUCUhpRSlGgVS2BoFkdAfsmmixmkFnV9lChoBmgJaA9DCKM883JYCGXAlIaUUpRoFU1QAWgWR0B+8VwT/Q0GdX2UKGgGaAloD0MIBcO5hpmpZsCUhpRSlGgVTccDaBZHQH73HXZoPCl1fZQoaAZoCWgPQwiLUGwFTbc3wJSGlFKUaBVNBwFoFkdAfv7O4G2TgXV9lChoBmgJaA9DCGK+vAD7gVHAlIaUUpRoFU0KAWgWR0B/A1hkRSP2dX2UKGgGaAloD0MIZK2h1F4oM0CUhpRSlGgVTegDaBZHQH8DcDbJwKl1fZQoaAZoCWgPQwgmqyLcZOZaQJSGlFKUaBVN6ANoFkdAfxZPnB+F13V9lChoBmgJaA9DCBkg0QSKcEDAlIaUUpRoFU0zAWgWR0B/Fp/c32mIdX2UKGgGaAloD0MI7URJSKRpMsCUhpRSlGgVTQcBaBZHQH8W1fzBhx51fZQoaAZoCWgPQwhv2SH+YQsPQJSGlFKUaBVLi2gWR0B/HX+cYqG2dX2UKGgGaAloD0MIQIf58gKRWMCUhpRSlGgVTXMBaBZHQH8jszhxYJV1fZQoaAZoCWgPQwgUz9kCQpMwwJSGlFKUaBVLomgWR0B/Lovg3tKJdX2UKGgGaAloD0MIMbJkjuXdFkCUhpRSlGgVTegDaBZHQH8xEE5hjON1fZQoaAZoCWgPQwiRCmMLQeI5wJSGlFKUaBVLqGgWR0B/M6JAMUh3dX2UKGgGaAloD0MIz9csl40uRMCUhpRSlGgVS+hoFkdAfznaJQ+EAnV9lChoBmgJaA9DCFzGTQ00/y5AlIaUUpRoFUuHaBZHQH9FqUA1ejV1fZQoaAZoCWgPQwja5Vsf1rZRwJSGlFKUaBVNDAFoFkdAf0yOR1X/53V9lChoBmgJaA9DCApoImx4ajvAlIaUUpRoFUvQaBZHQH9TfzJ6po91fZQoaAZoCWgPQwjtYS8UsApUQJSGlFKUaBVN6ANoFkdAf2UaxX4j8nV9lChoBmgJaA9DCF5jl6jePEPAlIaUUpRoFUvOaBZHQH9n/3evZAZ1fZQoaAZoCWgPQwj0M/W6RaQ6wJSGlFKUaBVLwWgWR0B/b08wHqu9dX2UKGgGaAloD0MIB13CobclVMCUhpRSlGgVTQkBaBZHQH99ekLx7Rh1fZQoaAZoCWgPQwgvpMNDGK8dwJSGlFKUaBVLl2gWR0B/gPOQhfShdX2UKGgGaAloD0MIeQH20akxZsCUhpRSlGgVTUgBaBZHQH+LpemelKt1fZQoaAZoCWgPQwilLa7xmYwLwJSGlFKUaBVL1GgWR0B/jOpZOi35dX2UKGgGaAloD0MIF7ZmKy8XRMCUhpRSlGgVS2NoFkdAf482cawUxnV9lChoBmgJaA9DCJ/jo8UZ/llAlIaUUpRoFU3oA2gWR0B/kH9m6GxmdX2UKGgGaAloD0MIMq8jDtnbUcCUhpRSlGgVTQ0BaBZHQH+WkutfXwt1fZQoaAZoCWgPQwj1vBsLCodEQJSGlFKUaBVLu2gWR0B/oiPn0TURdX2UKGgGaAloD0MIi8Iuih6mRsCUhpRSlGgVS8VoFkdAf6Iwosqaw3V9lChoBmgJaA9DCCjS/ZyCSEvAlIaUUpRoFUuqaBZHQH+1n+yZ8a51fZQoaAZoCWgPQwhIGtzWFo4fQJSGlFKUaBVLi2gWR0B/tf6k690zdX2UKGgGaAloD0MIpyOAm8UZUMCUhpRSlGgVS8NoFkdAf7otU4rBkHVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 70,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
rl-course-unit-1-ppo-lunarlander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feaef3bf872fb8d5b2477249e49ab88a9c8a5f9b1ddca7011ef1b90d389a1bf9
3
+ size 84829
rl-course-unit-1-ppo-lunarlander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c1c3832a0454f5abc7113356ea8c131b0c22606dd38735dc5205e26dbff1132
3
+ size 43201
rl-course-unit-1-ppo-lunarlander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
rl-course-unit-1-ppo-lunarlander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0