Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 290.54 +/- 19.07
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd3f4238550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd3f42385e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd3f4238670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd3f4238700>", "_build": "<function ActorCriticPolicy._build at 0x7fd3f4238790>", "forward": "<function ActorCriticPolicy.forward at 0x7fd3f4238820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd3f42388b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd3f4238940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd3f42389d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd3f4238a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd3f4238af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd3f4238b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd3f422a7c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685435985051718772, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqlPzyEiSs+j92WvjaekL4Zmiu+UAnXPQAAAAAAAAAAM4eFOx9zsz+TUdM+hxrMvsKAmruhd7+9AAAAAAAAAADa17A++7c8P7oTnr1X6t6+HAOlPv1yOb4AAAAAAAAAAKB3VT6wnp4+6tOyvutNkr5DBHg8hViYvQAAAAAAAAAAc0zIPQBHgj/yv4Q+pHIXv9LXLT6ZZRo+AAAAAAAAAABmtAK9QMh/P5c0Ir3Oleq+Pa3Tvb2kCDwAAAAAAAAAALPqIr0VpTY+wxxdPuZPmL53PD09uN5MPQAAAAAAAAAAs3Z6PeEX5z6ak3I8VFm0vqrZazz+Y4a9AAAAAAAAAACa3cy74ciIugsfhbirhCGzVBk8upZQlzcAAIA/AACAP7iIgr5UDik/okk3PnpR775kjhS+U1fdPQAAAAAAAAAAmhN4PHncHj7E1ck98S6pvsiKPD3rT2M9AAAAAAAAAACNC4U9XKM4uu9wjTrCFSy2/LfRuo2Up7kAAIA/AACAPwDxOr2P7lG6VDu4tHmT5K95ARI6SuWBMwAAAAAAAIA/AEBYPIQ7/D2yeRa+rl9Tvu3/Wr0GxOw8AAAAAAAAAADaxGg+k8EePx+OF77gTri+t0VmPoMTdb4AAAAAAAAAADNzcLrhvIu6DnjKOFddvzMmS+E6q2/rtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHM8L+xW1dCMAWyUS/eMAXSUR0ChH36bvw3HdX2UKGgGR0ByrB7v5P/JaAdL8mgIR0ChH41eKKpDdX2UKGgGR0BwDNf8dgfEaAdL4WgIR0ChH8bDMvAXdX2UKGgGR0Bw7W8SPEKmaAdL+WgIR0ChIChtLteEdX2UKGgGR0BxBT84xUNsaAdL5GgIR0ChIJsSK3uvdX2UKGgGR0ByBA08/2TQaAdNLAFoCEdAoSELTH80lHV9lChoBkdAc9s8m8dxQ2gHS+JoCEdAoSEzQu27WnV9lChoBkdAc1GwTufEoGgHS+doCEdAoSFH+XJHRXV9lChoBkdAcb2tFKCg9WgHS+RoCEdAoSFNWXC0nnV9lChoBkdAb0E+K0lZ5mgHS9ZoCEdAoSFyLuQZGnV9lChoBkdAcIlQFs54nmgHS9doCEdAoSHY3zcynHV9lChoBkdAcL0QU5+6RWgHS+xoCEdAoSHYjQiRn3V9lChoBkdAcei+u/1xsGgHS/FoCEdAoSJCUmlZYHV9lChoBkdAcGor0aqCH2gHS+poCEdAoSJrCBPKuHV9lChoBkdAcgIgsbvPT2gHS+JoCEdAoSJ9m+TNdXV9lChoBkdAbmyofjjrA2gHS/poCEdAoSLOvKU3XXV9lChoBkdAcQ65HEuQIWgHS+5oCEdAoSLYqTbFj3V9lChoBkdAcVIfqHGjsWgHS99oCEdAoSLwow22onV9lChoBkdAb9qVE/jbSWgHS99oCEdAoSOF/QSi/XV9lChoBkdAcheSgGr0a2gHTRkBaAhHQKEjhKqXF991fZQoaAZHQG+XXx4IKMNoB0vIaAhHQKEk7qM3qA11fZQoaAZHQG/RMaCL/CJoB00EAWgIR0ChJO7xd6cBdX2UKGgGR0ByyVz/6wdKaAdL1mgIR0ChJPVrAP/adX2UKGgGR0Byf0uQIUrTaAdL8mgIR0ChJTL+o99udX2UKGgGR0ByO3t2LYPHaAdL8GgIR0ChJVv557gLdX2UKGgGR0Bwf0xO+IuXaAdL/2gIR0ChJcfxMFlkdX2UKGgGR0BNg+IMz/IbaAdLpmgIR0ChJhafzz3AdX2UKGgGR0Bx8RNlAeJYaAdL7mgIR0ChJkUhmoR7dX2UKGgGR0ByZ+DdxhlUaAdL2GgIR0ChJrpzcRDkdX2UKGgGR0By3XtiQT24aAdNDAFoCEdAoSba5AhStXV9lChoBkdAcaCu3trsSmgHS+hoCEdAoSdYwCbMHXV9lChoBkdAcrS5DJEH+2gHS+JoCEdAoSdeoLofS3V9lChoBkdAcpG/lhgE2mgHS/9oCEdAoSdxTsIE83V9lChoBkdAc1pwPAfuC2gHS/VoCEdAoShiuKXOW3V9lChoBkdAcsZ+fAbhnGgHS/poCEdAoSiCRr8BMnV9lChoBkdAbsLu4wyqMmgHS95oCEdAoSmEyi22HHV9lChoBkdAcpxYR/ViF2gHS81oCEdAoSmdO45LiHV9lChoBkdActEO801qFmgHS+9oCEdAoSnrJCBwuXV9lChoBkdAcfegq3EycmgHS/VoCEdAoSpbOs1baHV9lChoBkdAcMIrCWNWEWgHTRIBaAhHQKEqxtiQT251fZQoaAZHQHCMMnRb8m9oB0vraAhHQKEq2uq3mV91fZQoaAZHQG+j/yf+S8toB0vwaAhHQKErU9jgAIZ1fZQoaAZHQHFWwFgUlAxoB0v3aAhHQKErvOIInjR1fZQoaAZHQHJ1Q+EAYHhoB0v1aAhHQKEsPIGyHEd1fZQoaAZHQHKsTxLCemNoB0vUaAhHQKEsTkRzzVd1fZQoaAZHQHL8livxH5JoB0vkaAhHQKEsi+7Dl5p1fZQoaAZHQHLxNEofCANoB00PAWgIR0ChLPBun/DMdX2UKGgGR0Bx1b3qRlpXaAdNBAFoCEdAoS0pIxxku3V9lChoBkdAb1163y7PIGgHS+poCEdAoS2PfEXLvHV9lChoBkdAc1BvW6K+BmgHS/loCEdAoS2v/YJ3PnV9lChoBkdAcK/3ai9Iw2gHS8xoCEdAoS3QBtDUmXV9lChoBkdAczUlVLi++WgHTQQBaAhHQKEukhib2Dh1fZQoaAZHQHDT76Hj6vdoB0vpaAhHQKEuvHmzSkV1fZQoaAZHQG+1JhWo3rFoB00LAWgIR0ChLvrhaTwEdX2UKGgGR0BxhNHy3CsPaAdL62gIR0ChLwm8/UvxdX2UKGgGR0BwyPKQq7ROaAdL8WgIR0ChLy3Z5AyEdX2UKGgGR0BxMkkfLcKxaAdL3GgIR0ChLyxyOq//dX2UKGgGR0BzCvDBMzuXaAdL1GgIR0ChL5sc6vJSdX2UKGgGR0ByQraqS5iFaAdNCAFoCEdAoTAChi9ZinV9lChoBkdAcnUJbdJrcmgHS/NoCEdAoTAECNjslnV9lChoBkdAchJre67NCGgHS+loCEdAoTARDCxeLXV9lChoBkdAbg/NliBoVWgHS99oCEdAoTBiE384xXV9lChoBkdAc06fjS5RTGgHS91oCEdAoTDGNzbN8nV9lChoBkdAcnfIy0rsjWgHS91oCEdAoTDpUJfICHV9lChoBkdAbPZ1zySV4WgHTSoBaAhHQKExS1cdHUd1fZQoaAZHQHFHQemvW6NoB0vLaAhHQKExjPIGQjl1fZQoaAZHQHEaX18LKFJoB00JAWgIR0ChMbMKLKmsdX2UKGgGR0BtMuQ8wHqvaAdL1mgIR0ChMg4lyBCldX2UKGgGR0BxLpeLNwBHaAdL72gIR0ChMqkTxoZidX2UKGgGR0BGdeh4+r2haAdLsGgIR0ChMq+RgZ0kdX2UKGgGR0BzsbLNfPX1aAdL/mgIR0ChMuI6Kcd6dX2UKGgGR0ByEVScbzbwaAdL4WgIR0ChMvKF7D2rdX2UKGgGR0BwDeh7E5yVaAdNGgFoCEdAoTMwz3yqdnV9lChoBkdAcyjZLIxQBWgHTS4BaAhHQKEzM4c3l0Z1fZQoaAZHQHEAIr4Fia1oB0vlaAhHQKEzciRGMGZ1fZQoaAZHQG8GPcrRSgpoB0vcaAhHQKEzsGs3hn91fZQoaAZHQHBcTn7pFCtoB0v7aAhHQKEzvk078vV1fZQoaAZHQGZ/Reb/ffpoB03oA2gIR0ChNCehPCVKdX2UKGgGR0BxdPW07bL2aAdL6GgIR0ChNDSj59E1dX2UKGgGR0BwyRtXPqs2aAdL/WgIR0ChNJc5CF9KdX2UKGgGR0ByM4FlkH2RaAdL7GgIR0ChNLQqqfe2dX2UKGgGR0BxDZpCa7VbaAdL4GgIR0ChNUo6r/83dX2UKGgGR0BvPO89Oh0yaAdL+mgIR0ChNVBp5/smdX2UKGgGR0BxeaZc9nscaAdNDAFoCEdAoTVsgIQe3nV9lChoBkdAcEHMxoIv8WgHS85oCEdAoTWWX7cfvHV9lChoBkdAcBa9US7GvWgHS9poCEdAoTW6Tr3TNXV9lChoBkdAcSMjhky1u2gHS99oCEdAoTYGB6KLsXV9lChoBkdAchzfhddE9mgHS/FoCEdAoTY00vXbunV9lChoBkdAcwyWRigCfmgHS+xoCEdAoTZnT9bX6XV9lChoBkdAVRNt/FzdUWgHS7loCEdAoTaww7DEWXV9lChoBkdAcTtrO7g882gHTQMBaAhHQKE2sy1uzhR1fZQoaAZHQHJfzfaYeDFoB0v0aAhHQKE2uVi4J/p1fZQoaAZHQHCOUHQhOgxoB0vsaAhHQKE25tNSIgx1fZQoaAZHQHP91wxWT5hoB0vxaAhHQKE26cp9ZzR1fZQoaAZHQHDYOsDGLk1oB0vyaAhHQKE3XblijL11fZQoaAZHQHLwmDL8rI5oB0vZaAhHQKE3lMt9QXR1fZQoaAZHQG/yhl18stloB0vjaAhHQKE3mlenhsJ1fZQoaAZHQHKQTvd/J/5oB0vKaAhHQKE34N5t3wF1fZQoaAZHQHI0QblzU7VoB0vbaAhHQKE4Gpda+vh1fZQoaAZHQHCcotcv/R5oB0vaaAhHQKE4f7x/d691ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d267b70d8e7975235264a3f8fe540f083216b445c952fe56f29f308e1c20c517
|
3 |
+
size 146648
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd3f4238550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd3f42385e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd3f4238670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd3f4238700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd3f4238790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd3f4238820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd3f42388b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd3f4238940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd3f42389d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd3f4238a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd3f4238af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd3f4238b80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd3f422a7c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2031616,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1685435985051718772,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqlPzyEiSs+j92WvjaekL4Zmiu+UAnXPQAAAAAAAAAAM4eFOx9zsz+TUdM+hxrMvsKAmruhd7+9AAAAAAAAAADa17A++7c8P7oTnr1X6t6+HAOlPv1yOb4AAAAAAAAAAKB3VT6wnp4+6tOyvutNkr5DBHg8hViYvQAAAAAAAAAAc0zIPQBHgj/yv4Q+pHIXv9LXLT6ZZRo+AAAAAAAAAABmtAK9QMh/P5c0Ir3Oleq+Pa3Tvb2kCDwAAAAAAAAAALPqIr0VpTY+wxxdPuZPmL53PD09uN5MPQAAAAAAAAAAs3Z6PeEX5z6ak3I8VFm0vqrZazz+Y4a9AAAAAAAAAACa3cy74ciIugsfhbirhCGzVBk8upZQlzcAAIA/AACAP7iIgr5UDik/okk3PnpR775kjhS+U1fdPQAAAAAAAAAAmhN4PHncHj7E1ck98S6pvsiKPD3rT2M9AAAAAAAAAACNC4U9XKM4uu9wjTrCFSy2/LfRuo2Up7kAAIA/AACAPwDxOr2P7lG6VDu4tHmT5K95ARI6SuWBMwAAAAAAAIA/AEBYPIQ7/D2yeRa+rl9Tvu3/Wr0GxOw8AAAAAAAAAADaxGg+k8EePx+OF77gTri+t0VmPoMTdb4AAAAAAAAAADNzcLrhvIu6DnjKOFddvzMmS+E6q2/rtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHM8L+xW1dCMAWyUS/eMAXSUR0ChH36bvw3HdX2UKGgGR0ByrB7v5P/JaAdL8mgIR0ChH41eKKpDdX2UKGgGR0BwDNf8dgfEaAdL4WgIR0ChH8bDMvAXdX2UKGgGR0Bw7W8SPEKmaAdL+WgIR0ChIChtLteEdX2UKGgGR0BxBT84xUNsaAdL5GgIR0ChIJsSK3uvdX2UKGgGR0ByBA08/2TQaAdNLAFoCEdAoSELTH80lHV9lChoBkdAc9s8m8dxQ2gHS+JoCEdAoSEzQu27WnV9lChoBkdAc1GwTufEoGgHS+doCEdAoSFH+XJHRXV9lChoBkdAcb2tFKCg9WgHS+RoCEdAoSFNWXC0nnV9lChoBkdAb0E+K0lZ5mgHS9ZoCEdAoSFyLuQZGnV9lChoBkdAcIlQFs54nmgHS9doCEdAoSHY3zcynHV9lChoBkdAcL0QU5+6RWgHS+xoCEdAoSHYjQiRn3V9lChoBkdAcei+u/1xsGgHS/FoCEdAoSJCUmlZYHV9lChoBkdAcGor0aqCH2gHS+poCEdAoSJrCBPKuHV9lChoBkdAcgIgsbvPT2gHS+JoCEdAoSJ9m+TNdXV9lChoBkdAbmyofjjrA2gHS/poCEdAoSLOvKU3XXV9lChoBkdAcQ65HEuQIWgHS+5oCEdAoSLYqTbFj3V9lChoBkdAcVIfqHGjsWgHS99oCEdAoSLwow22onV9lChoBkdAb9qVE/jbSWgHS99oCEdAoSOF/QSi/XV9lChoBkdAcheSgGr0a2gHTRkBaAhHQKEjhKqXF991fZQoaAZHQG+XXx4IKMNoB0vIaAhHQKEk7qM3qA11fZQoaAZHQG/RMaCL/CJoB00EAWgIR0ChJO7xd6cBdX2UKGgGR0ByyVz/6wdKaAdL1mgIR0ChJPVrAP/adX2UKGgGR0Byf0uQIUrTaAdL8mgIR0ChJTL+o99udX2UKGgGR0ByO3t2LYPHaAdL8GgIR0ChJVv557gLdX2UKGgGR0Bwf0xO+IuXaAdL/2gIR0ChJcfxMFlkdX2UKGgGR0BNg+IMz/IbaAdLpmgIR0ChJhafzz3AdX2UKGgGR0Bx8RNlAeJYaAdL7mgIR0ChJkUhmoR7dX2UKGgGR0ByZ+DdxhlUaAdL2GgIR0ChJrpzcRDkdX2UKGgGR0By3XtiQT24aAdNDAFoCEdAoSba5AhStXV9lChoBkdAcaCu3trsSmgHS+hoCEdAoSdYwCbMHXV9lChoBkdAcrS5DJEH+2gHS+JoCEdAoSdeoLofS3V9lChoBkdAcpG/lhgE2mgHS/9oCEdAoSdxTsIE83V9lChoBkdAc1pwPAfuC2gHS/VoCEdAoShiuKXOW3V9lChoBkdAcsZ+fAbhnGgHS/poCEdAoSiCRr8BMnV9lChoBkdAbsLu4wyqMmgHS95oCEdAoSmEyi22HHV9lChoBkdAcpxYR/ViF2gHS81oCEdAoSmdO45LiHV9lChoBkdActEO801qFmgHS+9oCEdAoSnrJCBwuXV9lChoBkdAcfegq3EycmgHS/VoCEdAoSpbOs1baHV9lChoBkdAcMIrCWNWEWgHTRIBaAhHQKEqxtiQT251fZQoaAZHQHCMMnRb8m9oB0vraAhHQKEq2uq3mV91fZQoaAZHQG+j/yf+S8toB0vwaAhHQKErU9jgAIZ1fZQoaAZHQHFWwFgUlAxoB0v3aAhHQKErvOIInjR1fZQoaAZHQHJ1Q+EAYHhoB0v1aAhHQKEsPIGyHEd1fZQoaAZHQHKsTxLCemNoB0vUaAhHQKEsTkRzzVd1fZQoaAZHQHL8livxH5JoB0vkaAhHQKEsi+7Dl5p1fZQoaAZHQHLxNEofCANoB00PAWgIR0ChLPBun/DMdX2UKGgGR0Bx1b3qRlpXaAdNBAFoCEdAoS0pIxxku3V9lChoBkdAb1163y7PIGgHS+poCEdAoS2PfEXLvHV9lChoBkdAc1BvW6K+BmgHS/loCEdAoS2v/YJ3PnV9lChoBkdAcK/3ai9Iw2gHS8xoCEdAoS3QBtDUmXV9lChoBkdAczUlVLi++WgHTQQBaAhHQKEukhib2Dh1fZQoaAZHQHDT76Hj6vdoB0vpaAhHQKEuvHmzSkV1fZQoaAZHQG+1JhWo3rFoB00LAWgIR0ChLvrhaTwEdX2UKGgGR0BxhNHy3CsPaAdL62gIR0ChLwm8/UvxdX2UKGgGR0BwyPKQq7ROaAdL8WgIR0ChLy3Z5AyEdX2UKGgGR0BxMkkfLcKxaAdL3GgIR0ChLyxyOq//dX2UKGgGR0BzCvDBMzuXaAdL1GgIR0ChL5sc6vJSdX2UKGgGR0ByQraqS5iFaAdNCAFoCEdAoTAChi9ZinV9lChoBkdAcnUJbdJrcmgHS/NoCEdAoTAECNjslnV9lChoBkdAchJre67NCGgHS+loCEdAoTARDCxeLXV9lChoBkdAbg/NliBoVWgHS99oCEdAoTBiE384xXV9lChoBkdAc06fjS5RTGgHS91oCEdAoTDGNzbN8nV9lChoBkdAcnfIy0rsjWgHS91oCEdAoTDpUJfICHV9lChoBkdAbPZ1zySV4WgHTSoBaAhHQKExS1cdHUd1fZQoaAZHQHFHQemvW6NoB0vLaAhHQKExjPIGQjl1fZQoaAZHQHEaX18LKFJoB00JAWgIR0ChMbMKLKmsdX2UKGgGR0BtMuQ8wHqvaAdL1mgIR0ChMg4lyBCldX2UKGgGR0BxLpeLNwBHaAdL72gIR0ChMqkTxoZidX2UKGgGR0BGdeh4+r2haAdLsGgIR0ChMq+RgZ0kdX2UKGgGR0BzsbLNfPX1aAdL/mgIR0ChMuI6Kcd6dX2UKGgGR0ByEVScbzbwaAdL4WgIR0ChMvKF7D2rdX2UKGgGR0BwDeh7E5yVaAdNGgFoCEdAoTMwz3yqdnV9lChoBkdAcyjZLIxQBWgHTS4BaAhHQKEzM4c3l0Z1fZQoaAZHQHEAIr4Fia1oB0vlaAhHQKEzciRGMGZ1fZQoaAZHQG8GPcrRSgpoB0vcaAhHQKEzsGs3hn91fZQoaAZHQHBcTn7pFCtoB0v7aAhHQKEzvk078vV1fZQoaAZHQGZ/Reb/ffpoB03oA2gIR0ChNCehPCVKdX2UKGgGR0BxdPW07bL2aAdL6GgIR0ChNDSj59E1dX2UKGgGR0BwyRtXPqs2aAdL/WgIR0ChNJc5CF9KdX2UKGgGR0ByM4FlkH2RaAdL7GgIR0ChNLQqqfe2dX2UKGgGR0BxDZpCa7VbaAdL4GgIR0ChNUo6r/83dX2UKGgGR0BvPO89Oh0yaAdL+mgIR0ChNVBp5/smdX2UKGgGR0BxeaZc9nscaAdNDAFoCEdAoTVsgIQe3nV9lChoBkdAcEHMxoIv8WgHS85oCEdAoTWWX7cfvHV9lChoBkdAcBa9US7GvWgHS9poCEdAoTW6Tr3TNXV9lChoBkdAcSMjhky1u2gHS99oCEdAoTYGB6KLsXV9lChoBkdAchzfhddE9mgHS/FoCEdAoTY00vXbunV9lChoBkdAcwyWRigCfmgHS+xoCEdAoTZnT9bX6XV9lChoBkdAVRNt/FzdUWgHS7loCEdAoTaww7DEWXV9lChoBkdAcTtrO7g882gHTQMBaAhHQKE2sy1uzhR1fZQoaAZHQHJfzfaYeDFoB0v0aAhHQKE2uVi4J/p1fZQoaAZHQHCOUHQhOgxoB0vsaAhHQKE25tNSIgx1fZQoaAZHQHP91wxWT5hoB0vxaAhHQKE26cp9ZzR1fZQoaAZHQHDYOsDGLk1oB0vyaAhHQKE3XblijL11fZQoaAZHQHLwmDL8rI5oB0vZaAhHQKE3lMt9QXR1fZQoaAZHQG/yhl18stloB0vjaAhHQKE3mlenhsJ1fZQoaAZHQHKQTvd/J/5oB0vKaAhHQKE34N5t3wF1fZQoaAZHQHI0QblzU7VoB0vbaAhHQKE4Gpda+vh1fZQoaAZHQHCcotcv/R5oB0vaaAhHQKE4f7x/d691ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 496,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 128,
|
87 |
+
"n_epochs": 8,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2b70ab69af3f39e0d4cdae118cc96bef87437a70fde4898a77b29eef8637033
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a884bb812bdde7fbe97172a397f225567924e9abc4f803fd34429c82396ca34
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (181 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 290.54094853737524, "std_reward": 19.073517249493346, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-30T09:18:22.393967"}
|