File size: 2,724 Bytes
5651811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
tags:
- generated_from_trainer
datasets:
- superb
metrics:
- accuracy
model-index:
- name: trillsson3-ft-keyword-spotting-11
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# trillsson3-ft-keyword-spotting-11

This model is a fine-tuned version of [vumichien/nonsemantic-speech-trillsson3](https://huggingface.co/vumichien/nonsemantic-speech-trillsson3) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3166
- Accuracy: 0.9088

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.9219        | 1.0   | 399  | 1.2023          | 0.6217   |
| 0.9604        | 2.0   | 798  | 0.5437          | 0.8117   |
| 0.7608        | 3.0   | 1197 | 0.4222          | 0.8888   |
| 0.7045        | 4.0   | 1596 | 0.3881          | 0.8932   |
| 0.659         | 5.0   | 1995 | 0.3706          | 0.8847   |
| 0.6541        | 6.0   | 2394 | 0.3553          | 0.8917   |
| 0.6448        | 7.0   | 2793 | 0.3482          | 0.8953   |
| 0.6288        | 8.0   | 3192 | 0.3409          | 0.8989   |
| 0.641         | 9.0   | 3591 | 0.3297          | 0.9051   |
| 0.6369        | 10.0  | 3990 | 0.3325          | 0.9042   |
| 0.6218        | 11.0  | 4389 | 0.3250          | 0.9064   |
| 0.6247        | 12.0  | 4788 | 0.3312          | 0.8959   |
| 0.6284        | 13.0  | 5187 | 0.3217          | 0.9069   |
| 0.6213        | 14.0  | 5586 | 0.3301          | 0.8978   |
| 0.6274        | 15.0  | 5985 | 0.3180          | 0.9081   |
| 0.627         | 16.0  | 6384 | 0.3257          | 0.9020   |
| 0.6227        | 17.0  | 6783 | 0.3193          | 0.9056   |
| 0.6192        | 18.0  | 7182 | 0.3199          | 0.9066   |
| 0.6075        | 19.0  | 7581 | 0.3183          | 0.9073   |
| 0.6196        | 20.0  | 7980 | 0.3166          | 0.9088   |


### Framework versions

- Transformers 4.23.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1