|
--- |
|
tags: |
|
- audio-classification |
|
- generated_from_trainer |
|
datasets: |
|
- superb |
|
metrics: |
|
- accuracy |
|
base_model: vumichien/nonsemantic-speech-trillsson3 |
|
model-index: |
|
- name: trillsson3-ft-keyword-spotting-11 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# trillsson3-ft-keyword-spotting-11 |
|
|
|
This model is a fine-tuned version of [vumichien/nonsemantic-speech-trillsson3](https://huggingface.co/vumichien/nonsemantic-speech-trillsson3) on the superb dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3166 |
|
- Accuracy: 0.9088 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 0 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.9219 | 1.0 | 399 | 1.2023 | 0.6217 | |
|
| 0.9604 | 2.0 | 798 | 0.5437 | 0.8117 | |
|
| 0.7608 | 3.0 | 1197 | 0.4222 | 0.8888 | |
|
| 0.7045 | 4.0 | 1596 | 0.3881 | 0.8932 | |
|
| 0.659 | 5.0 | 1995 | 0.3706 | 0.8847 | |
|
| 0.6541 | 6.0 | 2394 | 0.3553 | 0.8917 | |
|
| 0.6448 | 7.0 | 2793 | 0.3482 | 0.8953 | |
|
| 0.6288 | 8.0 | 3192 | 0.3409 | 0.8989 | |
|
| 0.641 | 9.0 | 3591 | 0.3297 | 0.9051 | |
|
| 0.6369 | 10.0 | 3990 | 0.3325 | 0.9042 | |
|
| 0.6218 | 11.0 | 4389 | 0.3250 | 0.9064 | |
|
| 0.6247 | 12.0 | 4788 | 0.3312 | 0.8959 | |
|
| 0.6284 | 13.0 | 5187 | 0.3217 | 0.9069 | |
|
| 0.6213 | 14.0 | 5586 | 0.3301 | 0.8978 | |
|
| 0.6274 | 15.0 | 5985 | 0.3180 | 0.9081 | |
|
| 0.627 | 16.0 | 6384 | 0.3257 | 0.9020 | |
|
| 0.6227 | 17.0 | 6783 | 0.3193 | 0.9056 | |
|
| 0.6192 | 18.0 | 7182 | 0.3199 | 0.9066 | |
|
| 0.6075 | 19.0 | 7581 | 0.3183 | 0.9073 | |
|
| 0.6196 | 20.0 | 7980 | 0.3166 | 0.9088 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.0.dev0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|