File size: 2,745 Bytes
3acedbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14c6955
 
3acedbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14c6955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3acedbf
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
tags:
- generated_from_trainer
datasets:
- superb
metrics:
- accuracy
model-index:
- name: trillsson3-ft-keyword-spotting-13
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# trillsson3-ft-keyword-spotting-13

This model is a fine-tuned version of [vumichien/nonsemantic-speech-trillsson3](https://huggingface.co/vumichien/nonsemantic-speech-trillsson3) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3115
- Accuracy: 0.9100

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 32
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.7756        | 1.0   | 798   | 0.9283          | 0.6396   |
| 0.8631        | 2.0   | 1596  | 0.4884          | 0.8573   |
| 0.7551        | 3.0   | 2394  | 0.3967          | 0.8832   |
| 0.6968        | 4.0   | 3192  | 0.3644          | 0.8989   |
| 0.67          | 5.0   | 3990  | 0.3428          | 0.9057   |
| 0.6854        | 6.0   | 4788  | 0.3408          | 0.9026   |
| 0.6701        | 7.0   | 5586  | 0.3359          | 0.9013   |
| 0.6734        | 8.0   | 6384  | 0.3285          | 0.9059   |
| 0.6581        | 9.0   | 7182  | 0.3199          | 0.9095   |
| 0.6557        | 10.0  | 7980  | 0.3301          | 0.8986   |
| 0.6768        | 11.0  | 8778  | 0.3174          | 0.9047   |
| 0.6459        | 12.0  | 9576  | 0.3192          | 0.9031   |
| 0.6607        | 13.0  | 10374 | 0.3173          | 0.9066   |
| 0.656         | 14.0  | 11172 | 0.3142          | 0.9094   |
| 0.6302        | 15.0  | 11970 | 0.3093          | 0.9153   |
| 0.636         | 16.0  | 12768 | 0.3184          | 0.9044   |
| 0.6327        | 17.0  | 13566 | 0.3104          | 0.9117   |
| 0.6428        | 18.0  | 14364 | 0.3158          | 0.9084   |
| 0.6515        | 19.0  | 15162 | 0.3129          | 0.9097   |
| 0.6441        | 20.0  | 15960 | 0.3115          | 0.9100   |


### Framework versions

- Transformers 4.23.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1