--- language: - ja license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large V2 Japanese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 ja type: mozilla-foundation/common_voice_11_0 config: ja split: test args: ja metrics: - name: Wer type: wer value: 8.1166 - name: Cer type: cer value: 5.0032 --- # openai/whisper-large-v2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2352 - Wer: 8.1166 - Cer: 5.0032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:| | 0.0897 | 0.1 | 1000 | 0.1884 | 11.0068 | 6.6992 | | 0.0396 | 0.2 | 2000 | 0.1749 | 9.7399 | 5.9350 | | 0.036 | 1.1 | 3000 | 0.1698 | 9.1419 | 5.6781 | | 0.012 | 1.2 | 4000 | 0.1849 | 9.3041 | 5.7661 | | 0.0151 | 2.09 | 5000 | 0.1879 | 9.1959 | 5.6761 | | 0.0047 | 2.19 | 6000 | 0.2097 | 8.6706 | 5.4422 | | 0.0046 | 3.09 | 7000 | 0.2040 | 8.8277 | 5.4717 | | 0.0015 | 3.19 | 8000 | 0.2260 | 8.4949 | 5.3101 | | 0.0013 | 4.09 | 9000 | 0.2339 | 8.3716 | 5.1471 | | 0.0005 | 4.19 | 10000 | 0.2352 | 8.1166 | 5.0032 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2