File size: 2,309 Bytes
9b3e87f
 
 
 
f1a3fda
9b3e87f
 
 
 
 
 
 
 
 
 
 
 
f1a3fda
9b3e87f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a3fda
9b3e87f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-change-arg
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: vuongnhathien/30VNFoods
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8726190476190476
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-change-arg

This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the vuongnhathien/30VNFoods dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5967
- Accuracy: 0.8726

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.782         | 1.0   | 275  | 0.8221          | 0.7638   |
| 0.4874        | 2.0   | 550  | 0.8359          | 0.7730   |
| 0.3023        | 3.0   | 825  | 0.7088          | 0.8115   |
| 0.192         | 4.0   | 1100 | 0.6909          | 0.8258   |
| 0.1053        | 5.0   | 1375 | 0.7432          | 0.8306   |
| 0.0487        | 6.0   | 1650 | 0.7190          | 0.8358   |
| 0.0141        | 7.0   | 1925 | 0.6014          | 0.8720   |
| 0.0066        | 8.0   | 2200 | 0.5995          | 0.8748   |
| 0.0018        | 9.0   | 2475 | 0.5910          | 0.8751   |
| 0.0031        | 10.0  | 2750 | 0.5912          | 0.8759   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2