File size: 2,687 Bytes
4d8c0d4
 
dbd6043
ee936e4
da9aabc
4d8c0d4
180a5b5
e63a929
 
 
1d58018
 
 
e63a929
1d58018
 
 
e63a929
1d58018
 
 
e63a929
1d58018
 
 
e63a929
1d58018
 
 
e63a929
1d58018
 
 
e63a929
1d58018
 
 
e63a929
1d58018
 
 
e63a929
1d58018
 
 
e63a929
1d58018
 
 
e63a929
1d58018
 
 
 
 
4d8c0d4
 
 
 
 
 
9f33adf
4d8c0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae06d8
 
 
4d8c0d4
cae06d8
4d8c0d4
 
 
 
 
 
 
 
 
cae06d8
 
 
 
 
 
 
 
4d8c0d4
cae06d8
 
 
 
4d8c0d4
cae06d8
4d8c0d4
 
 
 
 
 
 
 
 
 
 
1d58018
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
tags:
- tabular-classification
- sklearn
datasets:
- wine-quality
- lvwerra/red-wine
widget:
  structuredData:
    fixed_acidity:
    - 7.4
    - 7.8
    - 10.3
    volatile_acidity:
    - 0.7
    - 0.88
    - 0.32
    citric_acid:
    - 0
    - 0
    - 0.45
    residual_sugar:
    - 1.9
    - 2.6
    - 6.4
    chlorides:
    - 0.076
    - 0.098
    - 0.073
    free_sulfur_dioxide:
    - 11
    - 25
    - 5
    total_sulfur_dioxide:
    - 34
    - 67
    - 13
    density:
    - 0.9978
    - 0.9968
    - 0.9976
    pH:
    - 3.51
    - 3.2
    - 3.23
    sulphates:
    - 0.56
    - 0.68
    - 0.82
    alcohol:
    - 9.4
    - 9.8
    - 12.6
library_name: sklearn
pipeline_tag: tabular-classification
---

## Wine Quality classification

### A Simple Example of Scikit-learn Pipeline

> Inspired by https://towardsdatascience.com/a-simple-example-of-pipeline-in-machine-learning-with-scikit-learn-e726ffbb6976 by Saptashwa Bhattacharyya


### How to use

```python
from huggingface_hub import hf_hub_url, cached_download
import joblib
import pandas as pd

REPO_ID = "julien-c/wine-quality"
FILENAME = "sklearn_model.joblib"


model = joblib.load(cached_download(
    hf_hub_url(REPO_ID, FILENAME)
))

# model is a `sklearn.pipeline.Pipeline`
```

#### Get sample data from this repo

```python
data_file = cached_download(
    hf_hub_url(REPO_ID, "winequality-red.csv")
)
winedf = pd.read_csv(data_file, sep=";")


X = winedf.drop(["quality"], axis=1)
Y = winedf["quality"]

print(X[:3])
```

|    |   fixed acidity |   volatile acidity |   citric acid |   residual sugar |   chlorides |   free sulfur dioxide |   total sulfur dioxide |   density |   pH |   sulphates |   alcohol |
|---:|----------------:|-------------------:|--------------:|-----------------:|------------:|----------------------:|-----------------------:|----------:|-----:|------------:|----------:|
|  0 |             7.4 |               0.7  |          0    |              1.9 |       0.076 |                    11 |                     34 |    0.9978 | 3.51 |        0.56 |       9.4 |
|  1 |             7.8 |               0.88 |          0    |              2.6 |       0.098 |                    25 |                     67 |    0.9968 | 3.2  |        0.68 |       9.8 |
|  2 |             7.8 |               0.76 |          0.04 |              2.3 |       0.092 |                    15 |                     54 |    0.997  | 3.26 |        0.65 |       9.8 |


#### Get your prediction

```python
labels = model.predict(X[:3])
# [5, 5, 5]
```

#### Eval

```python
model.score(X, Y)
# 0.6616635397123202
```

### 🍷 Disclaimer

No red wine was drunk (unfortunately) while training this model 🍷