vvn0 commited on
Commit
6051616
1 Parent(s): fd9f3d9

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1442.86 +/- 397.05
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4063760bfd19b1212df7d130b72f0746de4f8c8282475643f5ba34aee7f2ce9
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b06da3430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b06da34c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b06da3550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b06da35e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0b06da3670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0b06da3700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0b06da3790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b06da3820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0b06da38b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b06da3940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b06da39d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b06da3a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f0b06d92ab0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675870282693240770,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEHZfT/IjGy/6fENP1dWcD+TL+48HrpVv+qnbj9WUZe/2YOOP09ME7wObpM/f3sAQCZT4b09io+/X22svlrL0r4OBYc/gfNCv2q+5D64HHQ+VE4fvk1v5z4F7A0+23vhv0WJbb/Pqd+/Yb/bPpmSqL8fLzy/UBtWv95hFD9kIaY+O6DQv2fEeT86dmo+LOhNvwAFjz+y+KK/ydE5v4paUz9rMj+/6SGGvNvlyz776AE/88a7PyB6Qb498Sw/E1oLvxfhyL5ONt6/UKcsvZgdsT5FiW2/hIESP9YdFcCRYkI/bobDv4bOwj1QOQM/GfWSPT0jZ78TYJw933wJviMOiT2Roic/l+ZHvVWlCL/Qf/C+lppyv6HjdT0B8jM/8bZCP4CNbT+xrOO+C3g1P0tfjbtWY5O+LccOv+Z1Rr9TWXI/EvOJP4SBEj9hv9s+mZKovxWo6D3sJku/EgIXP+jxbj/0xBq/b95Rv5Jomz4ebAi/goeOP7tCFby30xQ//gAHQPJLDb+MmYq/oS4Ivm3H5b/L2Y4/hDEDv21OaT606sY9Am3Nvh2anT+kHRG/2yD9v0WJbb+EgRI/Yb/bPpmSqL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADqbUk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEh8DvgAAAAA0Tfy/AAAAAKue0b0AAAAANcXhPwAAAAAlfMU9AAAAAG1Y3T8AAAAA5VAfugAAAAAAs+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv6E1tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJxKET4AAAAA5zzevwAAAAD0pss8AAAAADBH5T8AAAAAddEdvAAAAAA5l+o/AAAAAAAzwL0AAAAAnU/ZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMuLx7MAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBIo/w9AAAAAJ7N+78AAAAAgP25PAAAAACDuPM/AAAAAD/Z8z0AAAAAILHsPwAAAADnN7g8AAAAANjd278AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWTEE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcj4GPQAAAACQoOW/AAAAAMdvh70AAAAA8UT+PwAAAABpZQ8+AAAAAF1D3z8AAAAA6Lu6vQAAAAB9EPy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrSZvze41CMAWyUTegDjAF0lEdAqcgMcbR4QnV9lChoBkdAmkBeVxCIDmgHTegDaAhHQKnLXzijtXx1fZQoaAZHQJZL45GSZBtoB03oA2gIR0Cpzm+wLVnVdX2UKGgGR0CW/objLjgiaAdN6ANoCEdAqdBkGcFyJnV9lChoBkdAmfSPf0mMO2gHTegDaAhHQKnUEm51/2F1fZQoaAZHQJrzRirksBhoB03oA2gIR0Cp124ODrZ8dX2UKGgGR0CdNMKKpDNRaAdN6ANoCEdAqds8O09hZ3V9lChoBkdAleqJLM9r42gHTegDaAhHQKneRHEMspZ1fZQoaAZHQJE55jVhCt1oB03oA2gIR0Cp48FZX+2mdX2UKGgGR0CUuNCY1He8aAdN6ANoCEdAqecgSSNfgXV9lChoBkdAknuCZOSGJ2gHTegDaAhHQKnqRgnc+JR1fZQoaAZHQJdREmD15B1oB03oA2gIR0Cp7DQ9JSR9dX2UKGgGR0Ca7jvnr6ciaAdN6ANoCEdAqe+dlAeJYXV9lChoBkdAmrsdm6GxlmgHTegDaAhHQKny5abF0gd1fZQoaAZHQJp8Y86mwaBoB03oA2gIR0Cp9fVBt1p1dX2UKGgGR0CbEzd/8VHnaAdN6ANoCEdAqffp22XsxHV9lChoBkdAmhWhhYvFnGgHTegDaAhHQKn8/PykKu11fZQoaAZHQJaNsSK3uu1oB03oA2gIR0CqAkI55qubdX2UKGgGR0CXy/9oexOdaAdN6ANoCEdAqgVb7l7tzHV9lChoBkdAmdV0b961LWgHTegDaAhHQKoHSAz544Z1fZQoaAZHQJnJLmKZUkxoB03oA2gIR0CqCsIH9m6HdX2UKGgGR0CZYYcophF3aAdN6ANoCEdAqg5Sp97Wu3V9lChoBkdAmPJxyXD3umgHTegDaAhHQKoRfgWJrL11fZQoaAZHQJgb1da+vhZoB03oA2gIR0CqE4CJXQt0dX2UKGgGR0CXfRD8LrooaAdN6ANoCEdAqhc3R3NcGHV9lChoBkdAmMyZtSAH3WgHTegDaAhHQKocPOX3QD51fZQoaAZHQJfi035vcahoB03oA2gIR0CqIMZIYm9hdX2UKGgGR0CXf0BAOavzaAdN6ANoCEdAqiKuRPoFFHV9lChoBkdAmvMN+5OJtWgHTegDaAhHQKomFwGW2PV1fZQoaAZHQJqU7TDwYtRoB03oA2gIR0CqKW2LxZuAdX2UKGgGR0Ca1umDDjzaaAdN6ANoCEdAqiyOq94/vHV9lChoBkdAmN/Ql4TsY2gHTegDaAhHQKougxk/bCd1fZQoaAZHQJpNEJfICEJoB03oA2gIR0CqMf83dbgTdX2UKGgGR0CbvGp6yB07aAdN6ANoCEdAqjXMRpUPx3V9lChoBkdAmipJ7w8W9GgHTegDaAhHQKo6eWHk92Z1fZQoaAZHQJojKgGr0atoB03oA2gIR0CqPXGUfPondX2UKGgGR0CdFY8Jlar4aAdN6ANoCEdAqkElE7W/anV9lChoBkdAm7uEPMB6r2gHTegDaAhHQKpEcJQ+EAZ1fZQoaAZHQJ7EoYIjW09oB03oA2gIR0CqR5ktuk1udX2UKGgGR0CZ8EA57w8XaAdN6ANoCEdAqkmT8HfMwHV9lChoBkdAl+2pk9U0emgHTegDaAhHQKpNHwaR6nl1fZQoaAZHQJxKA4PwuuloB03oA2gIR0CqUHSrHU+cdX2UKGgGR0CYX9YTTOPeaAdN6ANoCEdAqlQt2C/XXnV9lChoBkdAmjKyQYDT0GgHTegDaAhHQKpXFbAUL2J1fZQoaAZHQJyLjEyckMVoB03oA2gIR0CqXFXFLnLadX2UKGgGR0CXPrGKQ7tBaAdN6ANoCEdAql+3IMjNZHV9lChoBkdAmy5qIacZtWgHTegDaAhHQKpi07Sy+pR1fZQoaAZHQJnSpm9QGfRoB03oA2gIR0CqZL/JvHcUdX2UKGgGR0CdOiVKwpvxaAdN6ANoCEdAqmgdqHoHLXV9lChoBkdAlLpQTqSowWgHTegDaAhHQKpricNpdrx1fZQoaAZHQJNQ7wH7gsNoB03oA2gIR0CqbqMjeKsNdX2UKGgGR0CZQ+3JPqLTaAdN6ANoCEdAqnCX93r2QHV9lChoBkdAktxicf/3nWgHTegDaAhHQKp1nH3Dej51fZQoaAZHQJh+NJlJ6IFoB03oA2gIR0CqernXmNipdX2UKGgGR0Cdks83dbgTaAdN6ANoCEdAqn3T1GsmwHV9lChoBkdAmgVmtyPuHGgHTegDaAhHQKp/xS9/SYx1fZQoaAZHQJxeQhB7eEZoB03oA2gIR0CqgzhFVktmdX2UKGgGR0Ca48rC3w1BaAdN6ANoCEdAqoblE3KjjHV9lChoBkdAnNDzCpFTemgHTegDaAhHQKqKTJkoWpJ1fZQoaAZHQJzcLKYAsCloB03oA2gIR0CqjEhlcyFgdX2UKGgGR0CcRb5KvmozaAdN6ANoCEdAqpAsc4o7WHV9lChoBkdAme6Wn889wGgHTegDaAhHQKqVP+6y0KJ1fZQoaAZHQJ3STgk1MuhoB03oA2gIR0CqmajRlYlqdX2UKGgGR0CbelXPqs2faAdN6ANoCEdAqpuZkNFz+3V9lChoBkdAmsjX/1g6VGgHTegDaAhHQKqfCgOjIq91fZQoaAZHQJvNlCgK4QVoB03oA2gIR0Cqon+I2wV1dX2UKGgGR0CaKDVi4J/oaAdN6ANoCEdAqqWjYChexHV9lChoBkdAmMleinHeamgHTegDaAhHQKqnmI9C/oJ1fZQoaAZHQJgRCzt1IRRoB03oA2gIR0Cqqx8QiA2AdX2UKGgGR0CGGRsZYPoWaAdN6ANoCEdAqq+ZtelbeXV9lChoBkdAk2j21MM7VGgHTegDaAhHQKq0gsXBP9F1fZQoaAZHQIEegPTXrdFoB03oA2gIR0Cqt3SC4BmxdX2UKGgGR0CSNGxVyWAxaAdN6ANoCEdAqrrfTspobnV9lChoBkdAiyOokzGgjGgHTegDaAhHQKq+RrAP/aR1fZQoaAZHQJN1jX2/SIBoB03oA2gIR0CqwZCaRZEEdX2UKGgGR0CQKP/EOy3TaAdN6ANoCEdAqsOP93r2QHV9lChoBkdAktUgckt292gHTegDaAhHQKrHNGbTc7B1fZQoaAZHQIPgqmIj4YdoB03oA2gIR0Cqyq6Mzdk8dX2UKGgGR0CJ8mJwbVBlaAdN6ANoCEdAqs8+thd+onV9lChoBkdAleZXbRF7U2gHTegDaAhHQKrSQVsUIs11fZQoaAZHQI/pkzZYgaFoB03oA2gIR0Cq1sCsny/cdX2UKGgGR0CbB9Z1V5ryaAdN6ANoCEdAqtotRBNVR3V9lChoBkdAlGj0cjqv/2gHTegDaAhHQKrdOyIHkcV1fZQoaAZHQJQZLK7qY7doB03oA2gIR0Cq3y6d1+y7dX2UKGgGR0CSfBsrNGExaAdN6ANoCEdAquKm2y9mH3V9lChoBkdAkJleQEIPb2gHTegDaAhHQKrl+m0E5hl1fZQoaAZHQJjuXnjhky1oB03oA2gIR0Cq6Qd2xIJ7dX2UKGgGR0CbFAPJJXhgaAdN6ANoCEdAquvReu3c6HV9lChoBkdAk4WmMn7YTWgHTegDaAhHQKrxCMS9M9N1fZQoaAZHQJe7hwxWT5hoB03oA2gIR0Cq9Vx6Ww/xdX2UKGgGR0CWwNR1X/5taAdN6ANoCEdAqviF+iJwbXV9lChoBkdAkzqOgg5imWgHTegDaAhHQKr6fv/BFd91fZQoaAZHQJX4ENOM2m5oB03oA2gIR0Cq/g9I5HVgdX2UKGgGR0CU0SGLUCq7aAdN6ANoCEdAqwG8cfeUIXV9lChoBkdAlFShBmf5DmgHTegDaAhHQKsE9AgPmPp1fZQoaAZHQJTfyxnnMdNoB03oA2gIR0CrBushX8wYdX2UKGgGR0CRbm4h2W6caAdN6ANoCEdAqwuxKQJXyXV9lChoBkdAledCu+yquWgHTegDaAhHQKsRFpW3jMp1fZQoaAZHQJdrWVgQYk5oB03oA2gIR0CrFHupCKJmdX2UKGgGR0CTFMcRUWEcaAdN6ANoCEdAqxZ6i22G7HVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feab3f31ec68ca6fe68161d372587fed00fa9c1be5c37a0a7e53e596866905f2
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d2c5808172ac7036bf864770290ca6e07bdf195eab7995668f6650dcc0a603d
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b06da3430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b06da34c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b06da3550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b06da35e0>", "_build": "<function ActorCriticPolicy._build at 0x7f0b06da3670>", "forward": "<function ActorCriticPolicy.forward at 0x7f0b06da3700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0b06da3790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b06da3820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0b06da38b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b06da3940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b06da39d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b06da3a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0b06d92ab0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675870282693240770, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEHZfT/IjGy/6fENP1dWcD+TL+48HrpVv+qnbj9WUZe/2YOOP09ME7wObpM/f3sAQCZT4b09io+/X22svlrL0r4OBYc/gfNCv2q+5D64HHQ+VE4fvk1v5z4F7A0+23vhv0WJbb/Pqd+/Yb/bPpmSqL8fLzy/UBtWv95hFD9kIaY+O6DQv2fEeT86dmo+LOhNvwAFjz+y+KK/ydE5v4paUz9rMj+/6SGGvNvlyz776AE/88a7PyB6Qb498Sw/E1oLvxfhyL5ONt6/UKcsvZgdsT5FiW2/hIESP9YdFcCRYkI/bobDv4bOwj1QOQM/GfWSPT0jZ78TYJw933wJviMOiT2Roic/l+ZHvVWlCL/Qf/C+lppyv6HjdT0B8jM/8bZCP4CNbT+xrOO+C3g1P0tfjbtWY5O+LccOv+Z1Rr9TWXI/EvOJP4SBEj9hv9s+mZKovxWo6D3sJku/EgIXP+jxbj/0xBq/b95Rv5Jomz4ebAi/goeOP7tCFby30xQ//gAHQPJLDb+MmYq/oS4Ivm3H5b/L2Y4/hDEDv21OaT606sY9Am3Nvh2anT+kHRG/2yD9v0WJbb+EgRI/Yb/bPpmSqL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADqbUk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEh8DvgAAAAA0Tfy/AAAAAKue0b0AAAAANcXhPwAAAAAlfMU9AAAAAG1Y3T8AAAAA5VAfugAAAAAAs+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv6E1tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJxKET4AAAAA5zzevwAAAAD0pss8AAAAADBH5T8AAAAAddEdvAAAAAA5l+o/AAAAAAAzwL0AAAAAnU/ZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMuLx7MAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBIo/w9AAAAAJ7N+78AAAAAgP25PAAAAACDuPM/AAAAAD/Z8z0AAAAAILHsPwAAAADnN7g8AAAAANjd278AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWTEE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcj4GPQAAAACQoOW/AAAAAMdvh70AAAAA8UT+PwAAAABpZQ8+AAAAAF1D3z8AAAAA6Lu6vQAAAAB9EPy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrSZvze41CMAWyUTegDjAF0lEdAqcgMcbR4QnV9lChoBkdAmkBeVxCIDmgHTegDaAhHQKnLXzijtXx1fZQoaAZHQJZL45GSZBtoB03oA2gIR0Cpzm+wLVnVdX2UKGgGR0CW/objLjgiaAdN6ANoCEdAqdBkGcFyJnV9lChoBkdAmfSPf0mMO2gHTegDaAhHQKnUEm51/2F1fZQoaAZHQJrzRirksBhoB03oA2gIR0Cp124ODrZ8dX2UKGgGR0CdNMKKpDNRaAdN6ANoCEdAqds8O09hZ3V9lChoBkdAleqJLM9r42gHTegDaAhHQKneRHEMspZ1fZQoaAZHQJE55jVhCt1oB03oA2gIR0Cp48FZX+2mdX2UKGgGR0CUuNCY1He8aAdN6ANoCEdAqecgSSNfgXV9lChoBkdAknuCZOSGJ2gHTegDaAhHQKnqRgnc+JR1fZQoaAZHQJdREmD15B1oB03oA2gIR0Cp7DQ9JSR9dX2UKGgGR0Ca7jvnr6ciaAdN6ANoCEdAqe+dlAeJYXV9lChoBkdAmrsdm6GxlmgHTegDaAhHQKny5abF0gd1fZQoaAZHQJp8Y86mwaBoB03oA2gIR0Cp9fVBt1p1dX2UKGgGR0CbEzd/8VHnaAdN6ANoCEdAqffp22XsxHV9lChoBkdAmhWhhYvFnGgHTegDaAhHQKn8/PykKu11fZQoaAZHQJaNsSK3uu1oB03oA2gIR0CqAkI55qubdX2UKGgGR0CXy/9oexOdaAdN6ANoCEdAqgVb7l7tzHV9lChoBkdAmdV0b961LWgHTegDaAhHQKoHSAz544Z1fZQoaAZHQJnJLmKZUkxoB03oA2gIR0CqCsIH9m6HdX2UKGgGR0CZYYcophF3aAdN6ANoCEdAqg5Sp97Wu3V9lChoBkdAmPJxyXD3umgHTegDaAhHQKoRfgWJrL11fZQoaAZHQJgb1da+vhZoB03oA2gIR0CqE4CJXQt0dX2UKGgGR0CXfRD8LrooaAdN6ANoCEdAqhc3R3NcGHV9lChoBkdAmMyZtSAH3WgHTegDaAhHQKocPOX3QD51fZQoaAZHQJfi035vcahoB03oA2gIR0CqIMZIYm9hdX2UKGgGR0CXf0BAOavzaAdN6ANoCEdAqiKuRPoFFHV9lChoBkdAmvMN+5OJtWgHTegDaAhHQKomFwGW2PV1fZQoaAZHQJqU7TDwYtRoB03oA2gIR0CqKW2LxZuAdX2UKGgGR0Ca1umDDjzaaAdN6ANoCEdAqiyOq94/vHV9lChoBkdAmN/Ql4TsY2gHTegDaAhHQKougxk/bCd1fZQoaAZHQJpNEJfICEJoB03oA2gIR0CqMf83dbgTdX2UKGgGR0CbvGp6yB07aAdN6ANoCEdAqjXMRpUPx3V9lChoBkdAmipJ7w8W9GgHTegDaAhHQKo6eWHk92Z1fZQoaAZHQJojKgGr0atoB03oA2gIR0CqPXGUfPondX2UKGgGR0CdFY8Jlar4aAdN6ANoCEdAqkElE7W/anV9lChoBkdAm7uEPMB6r2gHTegDaAhHQKpEcJQ+EAZ1fZQoaAZHQJ7EoYIjW09oB03oA2gIR0CqR5ktuk1udX2UKGgGR0CZ8EA57w8XaAdN6ANoCEdAqkmT8HfMwHV9lChoBkdAl+2pk9U0emgHTegDaAhHQKpNHwaR6nl1fZQoaAZHQJxKA4PwuuloB03oA2gIR0CqUHSrHU+cdX2UKGgGR0CYX9YTTOPeaAdN6ANoCEdAqlQt2C/XXnV9lChoBkdAmjKyQYDT0GgHTegDaAhHQKpXFbAUL2J1fZQoaAZHQJyLjEyckMVoB03oA2gIR0CqXFXFLnLadX2UKGgGR0CXPrGKQ7tBaAdN6ANoCEdAql+3IMjNZHV9lChoBkdAmy5qIacZtWgHTegDaAhHQKpi07Sy+pR1fZQoaAZHQJnSpm9QGfRoB03oA2gIR0CqZL/JvHcUdX2UKGgGR0CdOiVKwpvxaAdN6ANoCEdAqmgdqHoHLXV9lChoBkdAlLpQTqSowWgHTegDaAhHQKpricNpdrx1fZQoaAZHQJNQ7wH7gsNoB03oA2gIR0CqbqMjeKsNdX2UKGgGR0CZQ+3JPqLTaAdN6ANoCEdAqnCX93r2QHV9lChoBkdAktxicf/3nWgHTegDaAhHQKp1nH3Dej51fZQoaAZHQJh+NJlJ6IFoB03oA2gIR0CqernXmNipdX2UKGgGR0Cdks83dbgTaAdN6ANoCEdAqn3T1GsmwHV9lChoBkdAmgVmtyPuHGgHTegDaAhHQKp/xS9/SYx1fZQoaAZHQJxeQhB7eEZoB03oA2gIR0CqgzhFVktmdX2UKGgGR0Ca48rC3w1BaAdN6ANoCEdAqoblE3KjjHV9lChoBkdAnNDzCpFTemgHTegDaAhHQKqKTJkoWpJ1fZQoaAZHQJzcLKYAsCloB03oA2gIR0CqjEhlcyFgdX2UKGgGR0CcRb5KvmozaAdN6ANoCEdAqpAsc4o7WHV9lChoBkdAme6Wn889wGgHTegDaAhHQKqVP+6y0KJ1fZQoaAZHQJ3STgk1MuhoB03oA2gIR0CqmajRlYlqdX2UKGgGR0CbelXPqs2faAdN6ANoCEdAqpuZkNFz+3V9lChoBkdAmsjX/1g6VGgHTegDaAhHQKqfCgOjIq91fZQoaAZHQJvNlCgK4QVoB03oA2gIR0Cqon+I2wV1dX2UKGgGR0CaKDVi4J/oaAdN6ANoCEdAqqWjYChexHV9lChoBkdAmMleinHeamgHTegDaAhHQKqnmI9C/oJ1fZQoaAZHQJgRCzt1IRRoB03oA2gIR0Cqqx8QiA2AdX2UKGgGR0CGGRsZYPoWaAdN6ANoCEdAqq+ZtelbeXV9lChoBkdAk2j21MM7VGgHTegDaAhHQKq0gsXBP9F1fZQoaAZHQIEegPTXrdFoB03oA2gIR0Cqt3SC4BmxdX2UKGgGR0CSNGxVyWAxaAdN6ANoCEdAqrrfTspobnV9lChoBkdAiyOokzGgjGgHTegDaAhHQKq+RrAP/aR1fZQoaAZHQJN1jX2/SIBoB03oA2gIR0CqwZCaRZEEdX2UKGgGR0CQKP/EOy3TaAdN6ANoCEdAqsOP93r2QHV9lChoBkdAktUgckt292gHTegDaAhHQKrHNGbTc7B1fZQoaAZHQIPgqmIj4YdoB03oA2gIR0Cqyq6Mzdk8dX2UKGgGR0CJ8mJwbVBlaAdN6ANoCEdAqs8+thd+onV9lChoBkdAleZXbRF7U2gHTegDaAhHQKrSQVsUIs11fZQoaAZHQI/pkzZYgaFoB03oA2gIR0Cq1sCsny/cdX2UKGgGR0CbB9Z1V5ryaAdN6ANoCEdAqtotRBNVR3V9lChoBkdAlGj0cjqv/2gHTegDaAhHQKrdOyIHkcV1fZQoaAZHQJQZLK7qY7doB03oA2gIR0Cq3y6d1+y7dX2UKGgGR0CSfBsrNGExaAdN6ANoCEdAquKm2y9mH3V9lChoBkdAkJleQEIPb2gHTegDaAhHQKrl+m0E5hl1fZQoaAZHQJjuXnjhky1oB03oA2gIR0Cq6Qd2xIJ7dX2UKGgGR0CbFAPJJXhgaAdN6ANoCEdAquvReu3c6HV9lChoBkdAk4WmMn7YTWgHTegDaAhHQKrxCMS9M9N1fZQoaAZHQJe7hwxWT5hoB03oA2gIR0Cq9Vx6Ww/xdX2UKGgGR0CWwNR1X/5taAdN6ANoCEdAqviF+iJwbXV9lChoBkdAkzqOgg5imWgHTegDaAhHQKr6fv/BFd91fZQoaAZHQJX4ENOM2m5oB03oA2gIR0Cq/g9I5HVgdX2UKGgGR0CU0SGLUCq7aAdN6ANoCEdAqwG8cfeUIXV9lChoBkdAlFShBmf5DmgHTegDaAhHQKsE9AgPmPp1fZQoaAZHQJTfyxnnMdNoB03oA2gIR0CrBushX8wYdX2UKGgGR0CRbm4h2W6caAdN6ANoCEdAqwuxKQJXyXV9lChoBkdAledCu+yquWgHTegDaAhHQKsRFpW3jMp1fZQoaAZHQJdrWVgQYk5oB03oA2gIR0CrFHupCKJmdX2UKGgGR0CTFMcRUWEcaAdN6ANoCEdAqxZ6i22G7HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (995 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1442.8589741301316, "std_reward": 397.05241832299515, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-08T16:29:35.397443"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25d33361ae7ad7a2cb7bc2e3490fd8673a4b1446d35a2785a58dff9cc4cccd45
3
+ size 2136