Wilson Wongso commited on
Commit
a663308
โ€ข
1 Parent(s): 519e3ae

Initial commit

Browse files
README.md CHANGED
@@ -1,3 +1,134 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - automatic-speech-recognition
5
+ - kresnik/zeroth_korean
6
+ - generated_from_trainer
7
+ datasets:
8
+ - zeroth_korean_asr
9
+ model-index:
10
+ - name: ''
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ #
18
+
19
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the KRESNIK/ZEROTH_KOREAN - CLEAN dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2089
22
+ - Wer: 0.2954
23
+ - Cer: 0.0953
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 7.5e-05
43
+ - train_batch_size: 8
44
+ - eval_batch_size: 8
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 32
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_steps: 2000
51
+ - num_epochs: 50.0
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
58
+ | 19.7138 | 0.72 | 500 | 19.6427 | 1.0 | 1.0 |
59
+ | 4.8039 | 1.44 | 1000 | 4.7842 | 1.0 | 1.0 |
60
+ | 4.5619 | 2.16 | 1500 | 4.5608 | 0.9992 | 0.9598 |
61
+ | 4.254 | 2.88 | 2000 | 4.2729 | 0.9955 | 0.9063 |
62
+ | 4.1905 | 3.6 | 2500 | 4.2257 | 0.9903 | 0.8758 |
63
+ | 4.0683 | 4.32 | 3000 | 3.9294 | 0.9937 | 0.7911 |
64
+ | 3.486 | 5.04 | 3500 | 2.7045 | 1.0012 | 0.5934 |
65
+ | 2.946 | 5.75 | 4000 | 1.9691 | 0.9425 | 0.4634 |
66
+ | 2.634 | 6.47 | 4500 | 1.5212 | 0.8807 | 0.3850 |
67
+ | 2.4066 | 7.19 | 5000 | 1.2551 | 0.8177 | 0.3601 |
68
+ | 2.2651 | 7.91 | 5500 | 1.0423 | 0.7650 | 0.3039 |
69
+ | 2.1828 | 8.63 | 6000 | 0.9599 | 0.7273 | 0.3106 |
70
+ | 2.1023 | 9.35 | 6500 | 0.9482 | 0.7161 | 0.3063 |
71
+ | 2.0536 | 10.07 | 7000 | 0.8242 | 0.6767 | 0.2860 |
72
+ | 1.9803 | 10.79 | 7500 | 0.7643 | 0.6563 | 0.2637 |
73
+ | 1.9468 | 11.51 | 8000 | 0.7319 | 0.6441 | 0.2505 |
74
+ | 1.9178 | 12.23 | 8500 | 0.6937 | 0.6320 | 0.2489 |
75
+ | 1.8515 | 12.95 | 9000 | 0.6443 | 0.6053 | 0.2196 |
76
+ | 1.8083 | 13.67 | 9500 | 0.6286 | 0.6122 | 0.2148 |
77
+ | 1.819 | 14.39 | 10000 | 0.6015 | 0.5986 | 0.2074 |
78
+ | 1.7684 | 15.11 | 10500 | 0.5682 | 0.5741 | 0.1982 |
79
+ | 1.7195 | 15.83 | 11000 | 0.5385 | 0.5592 | 0.2007 |
80
+ | 1.7044 | 16.55 | 11500 | 0.5362 | 0.5524 | 0.2097 |
81
+ | 1.6879 | 17.27 | 12000 | 0.5119 | 0.5489 | 0.2083 |
82
+ | 1.656 | 17.98 | 12500 | 0.4990 | 0.5362 | 0.1968 |
83
+ | 1.6122 | 18.7 | 13000 | 0.4561 | 0.5092 | 0.1900 |
84
+ | 1.5919 | 19.42 | 13500 | 0.4778 | 0.5225 | 0.1975 |
85
+ | 1.5896 | 20.14 | 14000 | 0.4563 | 0.5098 | 0.1859 |
86
+ | 1.5589 | 20.86 | 14500 | 0.4362 | 0.4940 | 0.1725 |
87
+ | 1.5353 | 21.58 | 15000 | 0.4140 | 0.4826 | 0.1580 |
88
+ | 1.5441 | 22.3 | 15500 | 0.4031 | 0.4742 | 0.1550 |
89
+ | 1.5116 | 23.02 | 16000 | 0.3916 | 0.4748 | 0.1545 |
90
+ | 1.4731 | 23.74 | 16500 | 0.3841 | 0.4810 | 0.1542 |
91
+ | 1.4647 | 24.46 | 17000 | 0.3752 | 0.4524 | 0.1475 |
92
+ | 1.4328 | 25.18 | 17500 | 0.3587 | 0.4476 | 0.1461 |
93
+ | 1.4129 | 25.9 | 18000 | 0.3429 | 0.4242 | 0.1366 |
94
+ | 1.4062 | 26.62 | 18500 | 0.3450 | 0.4251 | 0.1355 |
95
+ | 1.3928 | 27.34 | 19000 | 0.3297 | 0.4145 | 0.1322 |
96
+ | 1.3906 | 28.06 | 19500 | 0.3210 | 0.4185 | 0.1336 |
97
+ | 1.358 | 28.78 | 20000 | 0.3131 | 0.3970 | 0.1275 |
98
+ | 1.3445 | 29.5 | 20500 | 0.3069 | 0.3920 | 0.1276 |
99
+ | 1.3159 | 30.22 | 21000 | 0.3035 | 0.3961 | 0.1255 |
100
+ | 1.3044 | 30.93 | 21500 | 0.2952 | 0.3854 | 0.1242 |
101
+ | 1.3034 | 31.65 | 22000 | 0.2966 | 0.3772 | 0.1227 |
102
+ | 1.2963 | 32.37 | 22500 | 0.2844 | 0.3706 | 0.1208 |
103
+ | 1.2765 | 33.09 | 23000 | 0.2841 | 0.3567 | 0.1173 |
104
+ | 1.2438 | 33.81 | 23500 | 0.2734 | 0.3552 | 0.1137 |
105
+ | 1.2487 | 34.53 | 24000 | 0.2703 | 0.3502 | 0.1118 |
106
+ | 1.2249 | 35.25 | 24500 | 0.2650 | 0.3484 | 0.1142 |
107
+ | 1.2229 | 35.97 | 25000 | 0.2584 | 0.3374 | 0.1097 |
108
+ | 1.2374 | 36.69 | 25500 | 0.2568 | 0.3337 | 0.1095 |
109
+ | 1.2153 | 37.41 | 26000 | 0.2494 | 0.3327 | 0.1071 |
110
+ | 1.1925 | 38.13 | 26500 | 0.2518 | 0.3366 | 0.1077 |
111
+ | 1.1908 | 38.85 | 27000 | 0.2437 | 0.3272 | 0.1057 |
112
+ | 1.1858 | 39.57 | 27500 | 0.2396 | 0.3265 | 0.1044 |
113
+ | 1.1808 | 40.29 | 28000 | 0.2373 | 0.3156 | 0.1028 |
114
+ | 1.1842 | 41.01 | 28500 | 0.2356 | 0.3152 | 0.1026 |
115
+ | 1.1668 | 41.73 | 29000 | 0.2319 | 0.3188 | 0.1025 |
116
+ | 1.1448 | 42.45 | 29500 | 0.2293 | 0.3099 | 0.0995 |
117
+ | 1.1327 | 43.17 | 30000 | 0.2265 | 0.3047 | 0.0979 |
118
+ | 1.1307 | 43.88 | 30500 | 0.2222 | 0.3078 | 0.0989 |
119
+ | 1.1419 | 44.6 | 31000 | 0.2215 | 0.3038 | 0.0981 |
120
+ | 1.1231 | 45.32 | 31500 | 0.2193 | 0.3013 | 0.0972 |
121
+ | 1.139 | 46.04 | 32000 | 0.2162 | 0.3007 | 0.0968 |
122
+ | 1.1114 | 46.76 | 32500 | 0.2122 | 0.2982 | 0.0960 |
123
+ | 1.111 | 47.48 | 33000 | 0.2125 | 0.2946 | 0.0948 |
124
+ | 1.0982 | 48.2 | 33500 | 0.2099 | 0.2957 | 0.0953 |
125
+ | 1.109 | 48.92 | 34000 | 0.2092 | 0.2955 | 0.0955 |
126
+ | 1.0905 | 49.64 | 34500 | 0.2088 | 0.2954 | 0.0953 |
127
+
128
+
129
+ ### Framework versions
130
+
131
+ - Transformers 4.17.0.dev0
132
+ - Pytorch 1.10.2+cu102
133
+ - Datasets 1.18.2.dev0
134
+ - Tokenizers 0.10.3
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<s>": 1205, "</s>": 1206}
all_results.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 50.0,
3
+ "eval_cer": 0.09533931664304834,
4
+ "eval_loss": 0.20887407660484314,
5
+ "eval_runtime": 41.7123,
6
+ "eval_samples": 456,
7
+ "eval_samples_per_second": 10.932,
8
+ "eval_steps_per_second": 1.367,
9
+ "eval_wer": 0.2953790395650861,
10
+ "train_loss": 2.2316733406121783,
11
+ "train_runtime": 114311.9751,
12
+ "train_samples": 22262,
13
+ "train_samples_per_second": 9.737,
14
+ "train_steps_per_second": 0.304
15
+ }
config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-xls-r-300m",
3
+ "activation_dropout": 0.1,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.0,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 768,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "mean",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.0,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "hidden_act": "gelu",
56
+ "hidden_dropout": 0.0,
57
+ "hidden_size": 1024,
58
+ "initializer_range": 0.02,
59
+ "intermediate_size": 4096,
60
+ "layer_norm_eps": 1e-05,
61
+ "layerdrop": 0.0,
62
+ "mask_feature_length": 64,
63
+ "mask_feature_min_masks": 0,
64
+ "mask_feature_prob": 0.25,
65
+ "mask_time_length": 10,
66
+ "mask_time_min_masks": 2,
67
+ "mask_time_prob": 0.75,
68
+ "model_type": "wav2vec2",
69
+ "num_adapter_layers": 3,
70
+ "num_attention_heads": 16,
71
+ "num_codevector_groups": 2,
72
+ "num_codevectors_per_group": 320,
73
+ "num_conv_pos_embedding_groups": 16,
74
+ "num_conv_pos_embeddings": 128,
75
+ "num_feat_extract_layers": 7,
76
+ "num_hidden_layers": 24,
77
+ "num_negatives": 100,
78
+ "output_hidden_size": 1024,
79
+ "pad_token_id": 1204,
80
+ "proj_codevector_dim": 768,
81
+ "tdnn_dilation": [
82
+ 1,
83
+ 2,
84
+ 3,
85
+ 1,
86
+ 1
87
+ ],
88
+ "tdnn_dim": [
89
+ 512,
90
+ 512,
91
+ 512,
92
+ 512,
93
+ 1500
94
+ ],
95
+ "tdnn_kernel": [
96
+ 5,
97
+ 3,
98
+ 3,
99
+ 1,
100
+ 1
101
+ ],
102
+ "torch_dtype": "float32",
103
+ "transformers_version": "4.17.0.dev0",
104
+ "use_weighted_layer_sum": false,
105
+ "vocab_size": 1207,
106
+ "xvector_output_dim": 512
107
+ }
eval_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 50.0,
3
+ "eval_cer": 0.09533931664304834,
4
+ "eval_loss": 0.20887407660484314,
5
+ "eval_runtime": 41.7123,
6
+ "eval_samples": 456,
7
+ "eval_samples_per_second": 10.932,
8
+ "eval_steps_per_second": 1.367,
9
+ "eval_wer": 0.2953790395650861
10
+ }
nohup.out ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bc8f067dea3b8b2f7be8445f2df742139fa6fedc42dc96052e1f03903ed3434
3
+ size 1266872433
run.sh ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python run_speech_recognition_ctc.py \
2
+ --dataset_name="kresnik/zeroth_korean" \
3
+ --model_name_or_path="facebook/wav2vec2-xls-r-300m" \
4
+ --dataset_config_name="clean" \
5
+ --output_dir="./" \
6
+ --overwrite_output_dir \
7
+ --num_train_epochs="50" \
8
+ --per_device_train_batch_size="8" \
9
+ --per_device_eval_batch_size="8" \
10
+ --gradient_accumulation_steps="4" \
11
+ --learning_rate="7.5e-5" \
12
+ --warmup_steps="2000" \
13
+ --length_column_name="input_length" \
14
+ --evaluation_strategy="steps" \
15
+ --text_column_name="text" \
16
+ --chars_to_ignore , ? . ! \- \; \: \" โ€œ % โ€˜ โ€ ๏ฟฝ โ€” โ€™ โ€ฆ โ€“ \
17
+ --save_steps="500" \
18
+ --eval_steps="500" \
19
+ --logging_steps="100" \
20
+ --layerdrop="0.0" \
21
+ --activation_dropout="0.1" \
22
+ --save_total_limit="3" \
23
+ --freeze_feature_encoder \
24
+ --feat_proj_dropout="0.0" \
25
+ --mask_time_prob="0.75" \
26
+ --mask_time_length="10" \
27
+ --mask_feature_prob="0.25" \
28
+ --mask_feature_length="64" \
29
+ --gradient_checkpointing \
30
+ --use_auth_token \
31
+ --fp16 \
32
+ --group_by_length \
33
+ --do_train --do_eval \
34
+ --push_to_hub
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,829 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a ๐Ÿค— Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from datasets import DatasetDict, load_dataset, load_metric
32
+
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForCTC,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Trainer,
42
+ TrainingArguments,
43
+ Wav2Vec2Processor,
44
+ set_seed,
45
+ )
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+
50
+
51
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
+ check_min_version("4.17.0.dev0")
53
+
54
+ require_version(
55
+ "datasets>=1.13.3",
56
+ "To fix: pip install -r examples/pytorch/text-classification/requirements.txt",
57
+ )
58
+
59
+
60
+ logger = logging.getLogger(__name__)
61
+
62
+
63
+ def list_field(default=None, metadata=None):
64
+ return field(default_factory=lambda: default, metadata=metadata)
65
+
66
+
67
+ @dataclass
68
+ class ModelArguments:
69
+ """
70
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
71
+ """
72
+
73
+ model_name_or_path: str = field(
74
+ metadata={
75
+ "help": "Path to pretrained model or model identifier from huggingface.co/models"
76
+ }
77
+ )
78
+ tokenizer_name_or_path: Optional[str] = field(
79
+ default=None,
80
+ metadata={
81
+ "help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"
82
+ },
83
+ )
84
+ cache_dir: Optional[str] = field(
85
+ default=None,
86
+ metadata={
87
+ "help": "Where do you want to store the pretrained models downloaded from huggingface.co"
88
+ },
89
+ )
90
+ freeze_feature_encoder: bool = field(
91
+ default=True,
92
+ metadata={"help": "Whether to freeze the feature encoder layers of the model."},
93
+ )
94
+ attention_dropout: float = field(
95
+ default=0.0,
96
+ metadata={"help": "The dropout ratio for the attention probabilities."},
97
+ )
98
+ activation_dropout: float = field(
99
+ default=0.0,
100
+ metadata={
101
+ "help": "The dropout ratio for activations inside the fully connected layer."
102
+ },
103
+ )
104
+ feat_proj_dropout: float = field(
105
+ default=0.0, metadata={"help": "The dropout ratio for the projected features."}
106
+ )
107
+ hidden_dropout: float = field(
108
+ default=0.0,
109
+ metadata={
110
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
111
+ },
112
+ )
113
+ final_dropout: float = field(
114
+ default=0.0,
115
+ metadata={"help": "The dropout probability for the final projection layer."},
116
+ )
117
+ mask_time_prob: float = field(
118
+ default=0.05,
119
+ metadata={
120
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
121
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
122
+ "vectors will be masked along the time axis."
123
+ },
124
+ )
125
+ mask_time_length: int = field(
126
+ default=10,
127
+ metadata={"help": "Length of vector span to mask along the time axis."},
128
+ )
129
+ mask_feature_prob: float = field(
130
+ default=0.0,
131
+ metadata={
132
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
133
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
134
+ },
135
+ )
136
+ mask_feature_length: int = field(
137
+ default=10,
138
+ metadata={"help": "Length of vector span to mask along the feature axis."},
139
+ )
140
+ layerdrop: float = field(
141
+ default=0.0, metadata={"help": "The LayerDrop probability."}
142
+ )
143
+ ctc_loss_reduction: Optional[str] = field(
144
+ default="mean",
145
+ metadata={
146
+ "help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."
147
+ },
148
+ )
149
+
150
+
151
+ @dataclass
152
+ class DataTrainingArguments:
153
+ """
154
+ Arguments pertaining to what data we are going to input our model for training and eval.
155
+
156
+ Using `HfArgumentParser` we can turn this class
157
+ into argparse arguments to be able to specify them on
158
+ the command line.
159
+ """
160
+
161
+ dataset_name: str = field(
162
+ metadata={
163
+ "help": "The configuration name of the dataset to use (via the datasets library)."
164
+ }
165
+ )
166
+ dataset_config_name: str = field(
167
+ default=None,
168
+ metadata={
169
+ "help": "The configuration name of the dataset to use (via the datasets library)."
170
+ },
171
+ )
172
+ train_split_name: str = field(
173
+ default="train",
174
+ metadata={
175
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
176
+ },
177
+ )
178
+ eval_split_name: str = field(
179
+ default="test",
180
+ metadata={
181
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
182
+ },
183
+ )
184
+ audio_column_name: str = field(
185
+ default="audio",
186
+ metadata={
187
+ "help": "The name of the dataset column containing the audio data. Defaults to 'audio'"
188
+ },
189
+ )
190
+ text_column_name: str = field(
191
+ default="text",
192
+ metadata={
193
+ "help": "The name of the dataset column containing the text data. Defaults to 'text'"
194
+ },
195
+ )
196
+ overwrite_cache: bool = field(
197
+ default=False,
198
+ metadata={"help": "Overwrite the cached preprocessed datasets or not."},
199
+ )
200
+ preprocessing_num_workers: Optional[int] = field(
201
+ default=None,
202
+ metadata={"help": "The number of processes to use for the preprocessing."},
203
+ )
204
+ max_train_samples: Optional[int] = field(
205
+ default=None,
206
+ metadata={
207
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
208
+ "value if set."
209
+ },
210
+ )
211
+ max_eval_samples: Optional[int] = field(
212
+ default=None,
213
+ metadata={
214
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
215
+ "value if set."
216
+ },
217
+ )
218
+ chars_to_ignore: Optional[List[str]] = list_field(
219
+ default=None,
220
+ metadata={"help": "A list of characters to remove from the transcripts."},
221
+ )
222
+ eval_metrics: List[str] = list_field(
223
+ default=["wer", "cer"],
224
+ metadata={
225
+ "help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"
226
+ },
227
+ )
228
+ max_duration_in_seconds: float = field(
229
+ default=20.0,
230
+ metadata={
231
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
232
+ },
233
+ )
234
+ min_duration_in_seconds: float = field(
235
+ default=0.0,
236
+ metadata={
237
+ "help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"
238
+ },
239
+ )
240
+ preprocessing_only: bool = field(
241
+ default=False,
242
+ metadata={
243
+ "help": "Whether to only do data preprocessing and skip training. "
244
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
245
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
246
+ "so that the cached datasets can consequently be loaded in distributed training"
247
+ },
248
+ )
249
+ use_auth_token: bool = field(
250
+ default=False,
251
+ metadata={
252
+ "help": "If :obj:`True`, will use the token generated when running"
253
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
254
+ },
255
+ )
256
+ unk_token: str = field(
257
+ default="[UNK]", metadata={"help": "The unk token for the tokenizer"},
258
+ )
259
+ pad_token: str = field(
260
+ default="[PAD]", metadata={"help": "The padding token for the tokenizer"},
261
+ )
262
+ word_delimiter_token: str = field(
263
+ default="|", metadata={"help": "The word delimiter token for the tokenizer"},
264
+ )
265
+ phoneme_language: Optional[str] = field(
266
+ default=None,
267
+ metadata={
268
+ "help": "The target language that should be used be"
269
+ " passed to the tokenizer for tokenization. Note that"
270
+ " this is only relevant if the model classifies the"
271
+ " input audio to a sequence of phoneme sequences."
272
+ },
273
+ )
274
+
275
+
276
+ @dataclass
277
+ class DataCollatorCTCWithPadding:
278
+ """
279
+ Data collator that will dynamically pad the inputs received.
280
+ Args:
281
+ processor (:class:`~transformers.AutoProcessor`)
282
+ The processor used for proccessing the data.
283
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
284
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
285
+ among:
286
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
287
+ sequence if provided).
288
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
289
+ maximum acceptable input length for the model if that argument is not provided.
290
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
291
+ different lengths).
292
+ max_length (:obj:`int`, `optional`):
293
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
294
+ max_length_labels (:obj:`int`, `optional`):
295
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
296
+ pad_to_multiple_of (:obj:`int`, `optional`):
297
+ If set will pad the sequence to a multiple of the provided value.
298
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
299
+ 7.5 (Volta).
300
+ """
301
+
302
+ processor: AutoProcessor
303
+ padding: Union[bool, str] = "longest"
304
+ pad_to_multiple_of: Optional[int] = None
305
+ pad_to_multiple_of_labels: Optional[int] = None
306
+
307
+ def __call__(
308
+ self, features: List[Dict[str, Union[List[int], torch.Tensor]]]
309
+ ) -> Dict[str, torch.Tensor]:
310
+ # split inputs and labels since they have to be of different lenghts and need
311
+ # different padding methods
312
+ input_features = [
313
+ {"input_values": feature["input_values"]} for feature in features
314
+ ]
315
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
316
+
317
+ batch = self.processor.pad(
318
+ input_features,
319
+ padding=self.padding,
320
+ pad_to_multiple_of=self.pad_to_multiple_of,
321
+ return_tensors="pt",
322
+ )
323
+
324
+ with self.processor.as_target_processor():
325
+ labels_batch = self.processor.pad(
326
+ label_features,
327
+ padding=self.padding,
328
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
329
+ return_tensors="pt",
330
+ )
331
+
332
+ # replace padding with -100 to ignore loss correctly
333
+ labels = labels_batch["input_ids"].masked_fill(
334
+ labels_batch.attention_mask.ne(1), -100
335
+ )
336
+
337
+ batch["labels"] = labels
338
+
339
+ return batch
340
+
341
+
342
+ def create_vocabulary_from_data(
343
+ datasets: DatasetDict,
344
+ word_delimiter_token: Optional[str] = None,
345
+ unk_token: Optional[str] = None,
346
+ pad_token: Optional[str] = None,
347
+ ):
348
+ # Given training and test labels create vocabulary
349
+ def extract_all_chars(batch):
350
+ all_text = " ".join(batch["target_text"])
351
+ vocab = list(set(all_text))
352
+ return {"vocab": [vocab], "all_text": [all_text]}
353
+
354
+ vocabs = datasets.map(
355
+ extract_all_chars,
356
+ batched=True,
357
+ batch_size=-1,
358
+ keep_in_memory=True,
359
+ remove_columns=datasets["train"].column_names,
360
+ )
361
+
362
+ # take union of all unique characters in each dataset
363
+ vocab_set = functools.reduce(
364
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]),
365
+ vocabs.values(),
366
+ )
367
+
368
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
369
+
370
+ # replace white space with delimiter token
371
+ if word_delimiter_token is not None:
372
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
373
+ del vocab_dict[" "]
374
+
375
+ # add unk and pad token
376
+ if unk_token is not None:
377
+ vocab_dict[unk_token] = len(vocab_dict)
378
+
379
+ if pad_token is not None:
380
+ vocab_dict[pad_token] = len(vocab_dict)
381
+
382
+ return vocab_dict
383
+
384
+
385
+ def main():
386
+ # See all possible arguments in src/transformers/training_args.py
387
+ # or by passing the --help flag to this script.
388
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
389
+
390
+ parser = HfArgumentParser(
391
+ (ModelArguments, DataTrainingArguments, TrainingArguments)
392
+ )
393
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
394
+ # If we pass only one argument to the script and it's the path to a json file,
395
+ # let's parse it to get our arguments.
396
+ model_args, data_args, training_args = parser.parse_json_file(
397
+ json_file=os.path.abspath(sys.argv[1])
398
+ )
399
+ else:
400
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
401
+
402
+ # Detecting last checkpoint.
403
+ last_checkpoint = None
404
+ if (
405
+ os.path.isdir(training_args.output_dir)
406
+ and training_args.do_train
407
+ and not training_args.overwrite_output_dir
408
+ ):
409
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
410
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
411
+ raise ValueError(
412
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
413
+ "Use --overwrite_output_dir to overcome."
414
+ )
415
+ elif last_checkpoint is not None:
416
+ logger.info(
417
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
418
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
419
+ )
420
+
421
+ # Setup logging
422
+ logging.basicConfig(
423
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
424
+ datefmt="%m/%d/%Y %H:%M:%S",
425
+ handlers=[logging.StreamHandler(sys.stdout)],
426
+ )
427
+ logger.setLevel(
428
+ logging.INFO if is_main_process(training_args.local_rank) else logging.WARN
429
+ )
430
+
431
+ # Log on each process the small summary:
432
+ logger.warning(
433
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
434
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
435
+ )
436
+ # Set the verbosity to info of the Transformers logger (on main process only):
437
+ if is_main_process(training_args.local_rank):
438
+ transformers.utils.logging.set_verbosity_info()
439
+ logger.info("Training/evaluation parameters %s", training_args)
440
+
441
+ # Set seed before initializing model.
442
+ set_seed(training_args.seed)
443
+
444
+ # 1. First, let's load the dataset
445
+ raw_datasets = DatasetDict()
446
+
447
+ if training_args.do_train:
448
+ raw_datasets["train"] = load_dataset(
449
+ data_args.dataset_name,
450
+ data_args.dataset_config_name,
451
+ split=data_args.train_split_name,
452
+ use_auth_token=data_args.use_auth_token,
453
+ )
454
+
455
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
456
+ raise ValueError(
457
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
458
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
459
+ f"{', '.join(raw_datasets['train'].column_names)}."
460
+ )
461
+
462
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
463
+ raise ValueError(
464
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
465
+ "Make sure to set `--text_column_name` to the correct text column - one of "
466
+ f"{', '.join(raw_datasets['train'].column_names)}."
467
+ )
468
+
469
+ if data_args.max_train_samples is not None:
470
+ raw_datasets["train"] = raw_datasets["train"].select(
471
+ range(data_args.max_train_samples)
472
+ )
473
+
474
+ if training_args.do_eval:
475
+ raw_datasets["eval"] = load_dataset(
476
+ data_args.dataset_name,
477
+ data_args.dataset_config_name,
478
+ split=data_args.eval_split_name,
479
+ use_auth_token=data_args.use_auth_token,
480
+ )
481
+
482
+ if data_args.max_eval_samples is not None:
483
+ raw_datasets["eval"] = raw_datasets["eval"].select(
484
+ range(data_args.max_eval_samples)
485
+ )
486
+
487
+ # 2. We remove some special characters from the datasets
488
+ # that make training complicated and do not help in transcribing the speech
489
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
490
+ # that could be easily picked up by the model
491
+ chars_to_ignore_regex = (
492
+ f'[{"".join(data_args.chars_to_ignore)}]'
493
+ if data_args.chars_to_ignore is not None
494
+ else None
495
+ )
496
+ text_column_name = data_args.text_column_name
497
+
498
+ def remove_special_characters(batch):
499
+ if chars_to_ignore_regex is not None:
500
+ batch["target_text"] = (
501
+ re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
502
+ )
503
+ else:
504
+ batch["target_text"] = batch[text_column_name].lower() + " "
505
+ return batch
506
+
507
+ with training_args.main_process_first(
508
+ desc="dataset map special characters removal"
509
+ ):
510
+ raw_datasets = raw_datasets.map(
511
+ remove_special_characters,
512
+ remove_columns=[text_column_name],
513
+ desc="remove special characters from datasets",
514
+ )
515
+
516
+ # save special tokens for tokenizer
517
+ word_delimiter_token = data_args.word_delimiter_token
518
+ unk_token = data_args.unk_token
519
+ pad_token = data_args.pad_token
520
+
521
+ # 3. Next, let's load the config as we might need it to create
522
+ # the tokenizer
523
+ # load config
524
+ config = AutoConfig.from_pretrained(
525
+ model_args.model_name_or_path,
526
+ cache_dir=model_args.cache_dir,
527
+ use_auth_token=data_args.use_auth_token,
528
+ )
529
+
530
+ # 4. Next, if no tokenizer file is defined,
531
+ # we create the vocabulary of the model by extracting all unique characters from
532
+ # the training and evaluation datasets
533
+ # We need to make sure that only first rank saves vocabulary
534
+ # make sure all processes wait until vocab is created
535
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
536
+ tokenizer_kwargs = {}
537
+ if tokenizer_name_or_path is None:
538
+ # save vocab in training output dir
539
+ tokenizer_name_or_path = training_args.output_dir
540
+
541
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
542
+
543
+ with training_args.main_process_first():
544
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
545
+ os.remove(vocab_file)
546
+
547
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
548
+ if not os.path.isfile(vocab_file):
549
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
550
+ vocab_dict = create_vocabulary_from_data(
551
+ raw_datasets,
552
+ word_delimiter_token=word_delimiter_token,
553
+ unk_token=unk_token,
554
+ pad_token=pad_token,
555
+ )
556
+
557
+ # save vocab dict to be loaded into tokenizer
558
+ with open(vocab_file, "w") as file:
559
+ json.dump(vocab_dict, file)
560
+
561
+ # if tokenizer has just been created
562
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
563
+ tokenizer_kwargs = {
564
+ "config": config if config.tokenizer_class is not None else None,
565
+ "tokenizer_type": config.model_type
566
+ if config.tokenizer_class is None
567
+ else None,
568
+ "unk_token": unk_token,
569
+ "pad_token": pad_token,
570
+ "word_delimiter_token": word_delimiter_token,
571
+ }
572
+
573
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
574
+ # Note for distributed training, the .from_pretrained methods guarantee that only
575
+ # one local process can concurrently download model & vocab.
576
+
577
+ # load feature_extractor and tokenizer
578
+ tokenizer = AutoTokenizer.from_pretrained(
579
+ tokenizer_name_or_path,
580
+ use_auth_token=data_args.use_auth_token,
581
+ **tokenizer_kwargs,
582
+ )
583
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
584
+ model_args.model_name_or_path,
585
+ cache_dir=model_args.cache_dir,
586
+ use_auth_token=data_args.use_auth_token,
587
+ )
588
+
589
+ # adapt config
590
+ config.update(
591
+ {
592
+ "feat_proj_dropout": model_args.feat_proj_dropout,
593
+ "attention_dropout": model_args.attention_dropout,
594
+ "hidden_dropout": model_args.hidden_dropout,
595
+ "final_dropout": model_args.final_dropout,
596
+ "mask_time_prob": model_args.mask_time_prob,
597
+ "mask_time_length": model_args.mask_time_length,
598
+ "mask_feature_prob": model_args.mask_feature_prob,
599
+ "mask_feature_length": model_args.mask_feature_length,
600
+ "gradient_checkpointing": training_args.gradient_checkpointing,
601
+ "layerdrop": model_args.layerdrop,
602
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
603
+ "pad_token_id": tokenizer.pad_token_id,
604
+ "vocab_size": len(tokenizer),
605
+ "activation_dropout": model_args.activation_dropout,
606
+ }
607
+ )
608
+
609
+ # create model
610
+ model = AutoModelForCTC.from_pretrained(
611
+ model_args.model_name_or_path,
612
+ cache_dir=model_args.cache_dir,
613
+ config=config,
614
+ use_auth_token=data_args.use_auth_token,
615
+ )
616
+
617
+ # freeze encoder
618
+ if model_args.freeze_feature_encoder:
619
+ model.freeze_feature_encoder()
620
+
621
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
622
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
623
+ # so that we just need to set the correct target sampling rate and normalize the input
624
+ # via the `feature_extractor`
625
+
626
+ # make sure that dataset decodes audio with correct sampling rate
627
+ dataset_sampling_rate = (
628
+ next(iter(raw_datasets.values()))
629
+ .features[data_args.audio_column_name]
630
+ .sampling_rate
631
+ )
632
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
633
+ raw_datasets = raw_datasets.cast_column(
634
+ data_args.audio_column_name,
635
+ datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
636
+ )
637
+
638
+ # derive max & min input length for sample rate & max duration
639
+ max_input_length = (
640
+ data_args.max_duration_in_seconds * feature_extractor.sampling_rate
641
+ )
642
+ min_input_length = (
643
+ data_args.min_duration_in_seconds * feature_extractor.sampling_rate
644
+ )
645
+ audio_column_name = data_args.audio_column_name
646
+ num_workers = data_args.preprocessing_num_workers
647
+
648
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
649
+ phoneme_language = data_args.phoneme_language
650
+
651
+ # Preprocessing the datasets.
652
+ # We need to read the audio files as arrays and tokenize the targets.
653
+ def prepare_dataset(batch):
654
+ # load audio
655
+ sample = batch[audio_column_name]
656
+
657
+ inputs = feature_extractor(
658
+ sample["array"], sampling_rate=sample["sampling_rate"]
659
+ )
660
+ batch["input_values"] = inputs.input_values[0]
661
+ batch["input_length"] = len(batch["input_values"])
662
+
663
+ # encode targets
664
+ additional_kwargs = {}
665
+ if phoneme_language is not None:
666
+ additional_kwargs["phonemizer_lang"] = phoneme_language
667
+
668
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
669
+ return batch
670
+
671
+ with training_args.main_process_first(desc="dataset map preprocessing"):
672
+ vectorized_datasets = raw_datasets.map(
673
+ prepare_dataset,
674
+ remove_columns=next(iter(raw_datasets.values())).column_names,
675
+ num_proc=num_workers,
676
+ desc="preprocess datasets",
677
+ )
678
+
679
+ def is_audio_in_length_range(length):
680
+ return length > min_input_length and length < max_input_length
681
+
682
+ # filter data that is shorter than min_input_length
683
+ vectorized_datasets = vectorized_datasets.filter(
684
+ is_audio_in_length_range,
685
+ num_proc=num_workers,
686
+ input_columns=["input_length"],
687
+ )
688
+
689
+ # 7. Next, we can prepare the training.
690
+ # Let's use word error rate (WER) as our evaluation metric,
691
+ # instantiate a data collator and the trainer
692
+
693
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
694
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
695
+
696
+ # for large datasets it is advised to run the preprocessing on a
697
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
698
+ # be a timeout when running the script in distributed mode.
699
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
700
+ # cached dataset
701
+ if data_args.preprocessing_only:
702
+ logger.info(
703
+ f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}"
704
+ )
705
+ return
706
+
707
+ def compute_metrics(pred):
708
+ pred_logits = pred.predictions
709
+ pred_ids = np.argmax(pred_logits, axis=-1)
710
+
711
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
712
+
713
+ pred_str = tokenizer.batch_decode(pred_ids)
714
+ # we do not want to group tokens when computing the metrics
715
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
716
+
717
+ metrics = {
718
+ k: v.compute(predictions=pred_str, references=label_str)
719
+ for k, v in eval_metrics.items()
720
+ }
721
+
722
+ return metrics
723
+
724
+ # Now save everything to be able to create a single processor later
725
+ if is_main_process(training_args.local_rank):
726
+ # save feature extractor, tokenizer and config
727
+ feature_extractor.save_pretrained(training_args.output_dir)
728
+ tokenizer.save_pretrained(training_args.output_dir)
729
+ config.save_pretrained(training_args.output_dir)
730
+
731
+ try:
732
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
733
+ except (OSError, KeyError):
734
+ warnings.warn(
735
+ "Loading a processor from a feature extractor config that does not"
736
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
737
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
738
+ " `'processor_class': 'Wav2Vec2Processor'`",
739
+ FutureWarning,
740
+ )
741
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
742
+
743
+ # Instantiate custom data collator
744
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
745
+
746
+ # Initialize Trainer
747
+ trainer = Trainer(
748
+ model=model,
749
+ data_collator=data_collator,
750
+ args=training_args,
751
+ compute_metrics=compute_metrics,
752
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
753
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
754
+ tokenizer=feature_extractor,
755
+ )
756
+
757
+ # 8. Finally, we can start training
758
+
759
+ # Training
760
+ if training_args.do_train:
761
+
762
+ # use last checkpoint if exist
763
+ if last_checkpoint is not None:
764
+ checkpoint = last_checkpoint
765
+ elif os.path.isdir(model_args.model_name_or_path):
766
+ checkpoint = model_args.model_name_or_path
767
+ else:
768
+ checkpoint = None
769
+
770
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
771
+ trainer.save_model()
772
+
773
+ metrics = train_result.metrics
774
+ max_train_samples = (
775
+ data_args.max_train_samples
776
+ if data_args.max_train_samples is not None
777
+ else len(vectorized_datasets["train"])
778
+ )
779
+ metrics["train_samples"] = min(
780
+ max_train_samples, len(vectorized_datasets["train"])
781
+ )
782
+
783
+ trainer.log_metrics("train", metrics)
784
+ trainer.save_metrics("train", metrics)
785
+ trainer.save_state()
786
+
787
+ # Evaluation
788
+ results = {}
789
+ if training_args.do_eval:
790
+ logger.info("*** Evaluate ***")
791
+ metrics = trainer.evaluate()
792
+ max_eval_samples = (
793
+ data_args.max_eval_samples
794
+ if data_args.max_eval_samples is not None
795
+ else len(vectorized_datasets["eval"])
796
+ )
797
+ metrics["eval_samples"] = min(
798
+ max_eval_samples, len(vectorized_datasets["eval"])
799
+ )
800
+
801
+ trainer.log_metrics("eval", metrics)
802
+ trainer.save_metrics("eval", metrics)
803
+
804
+ # Write model card and (optionally) push to hub
805
+ config_name = (
806
+ data_args.dataset_config_name
807
+ if data_args.dataset_config_name is not None
808
+ else "na"
809
+ )
810
+ kwargs = {
811
+ "finetuned_from": model_args.model_name_or_path,
812
+ "tasks": "speech-recognition",
813
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
814
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
815
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
816
+ }
817
+ if "common_voice" in data_args.dataset_name:
818
+ kwargs["language"] = config_name
819
+
820
+ if training_args.push_to_hub:
821
+ trainer.push_to_hub(**kwargs)
822
+ else:
823
+ trainer.create_model_card(**kwargs)
824
+
825
+ return results
826
+
827
+
828
+ if __name__ == "__main__":
829
+ main()
runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6/1643613501.488685/events.out.tfevents.1643613501.job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6.1151936.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28a6ab5fcdee80fd31c69dc157696d3063a1cc27099a2452f6695c51cba48628
3
+ size 4753
runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6/events.out.tfevents.1643613501.job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6.1151936.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e586cc74e2f42c18b87325dcb4cc447cd7318cc76addfa59195430faa1ea2ea5
3
+ size 85518
runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6/events.out.tfevents.1643727998.job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6.1151936.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fcf7744c50287e982c2028e14e51bc27110121c60f9a7d4ec7fc26a06f86232
3
+ size 412
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 50.0,
3
+ "train_loss": 2.2316733406121783,
4
+ "train_runtime": 114311.9751,
5
+ "train_samples": 22262,
6
+ "train_samples_per_second": 9.737,
7
+ "train_steps_per_second": 0.304
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,2797 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 49.99892202659001,
5
+ "global_step": 34750,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.14,
12
+ "learning_rate": 3.675e-06,
13
+ "loss": 47.2908,
14
+ "step": 100
15
+ },
16
+ {
17
+ "epoch": 0.29,
18
+ "learning_rate": 7.425e-06,
19
+ "loss": 33.9125,
20
+ "step": 200
21
+ },
22
+ {
23
+ "epoch": 0.43,
24
+ "learning_rate": 1.1174999999999999e-05,
25
+ "loss": 26.6068,
26
+ "step": 300
27
+ },
28
+ {
29
+ "epoch": 0.57,
30
+ "learning_rate": 1.4925e-05,
31
+ "loss": 23.2775,
32
+ "step": 400
33
+ },
34
+ {
35
+ "epoch": 0.72,
36
+ "learning_rate": 1.8675e-05,
37
+ "loss": 19.7138,
38
+ "step": 500
39
+ },
40
+ {
41
+ "epoch": 0.72,
42
+ "eval_cer": 1.0,
43
+ "eval_loss": 19.642736434936523,
44
+ "eval_runtime": 41.3907,
45
+ "eval_samples_per_second": 11.017,
46
+ "eval_steps_per_second": 1.377,
47
+ "eval_wer": 1.0,
48
+ "step": 500
49
+ },
50
+ {
51
+ "epoch": 0.86,
52
+ "learning_rate": 2.2424999999999996e-05,
53
+ "loss": 15.7715,
54
+ "step": 600
55
+ },
56
+ {
57
+ "epoch": 1.01,
58
+ "learning_rate": 2.6174999999999996e-05,
59
+ "loss": 11.4061,
60
+ "step": 700
61
+ },
62
+ {
63
+ "epoch": 1.15,
64
+ "learning_rate": 2.9925e-05,
65
+ "loss": 7.4329,
66
+ "step": 800
67
+ },
68
+ {
69
+ "epoch": 1.29,
70
+ "learning_rate": 3.3675e-05,
71
+ "loss": 5.3081,
72
+ "step": 900
73
+ },
74
+ {
75
+ "epoch": 1.44,
76
+ "learning_rate": 3.7424999999999995e-05,
77
+ "loss": 4.8039,
78
+ "step": 1000
79
+ },
80
+ {
81
+ "epoch": 1.44,
82
+ "eval_cer": 1.0,
83
+ "eval_loss": 4.784187316894531,
84
+ "eval_runtime": 42.2256,
85
+ "eval_samples_per_second": 10.799,
86
+ "eval_steps_per_second": 1.35,
87
+ "eval_wer": 1.0,
88
+ "step": 1000
89
+ },
90
+ {
91
+ "epoch": 1.58,
92
+ "learning_rate": 4.1175e-05,
93
+ "loss": 4.762,
94
+ "step": 1100
95
+ },
96
+ {
97
+ "epoch": 1.73,
98
+ "learning_rate": 4.4924999999999994e-05,
99
+ "loss": 4.6928,
100
+ "step": 1200
101
+ },
102
+ {
103
+ "epoch": 1.87,
104
+ "learning_rate": 4.8675e-05,
105
+ "loss": 4.6292,
106
+ "step": 1300
107
+ },
108
+ {
109
+ "epoch": 2.01,
110
+ "learning_rate": 5.2424999999999994e-05,
111
+ "loss": 4.6321,
112
+ "step": 1400
113
+ },
114
+ {
115
+ "epoch": 2.16,
116
+ "learning_rate": 5.6175e-05,
117
+ "loss": 4.5619,
118
+ "step": 1500
119
+ },
120
+ {
121
+ "epoch": 2.16,
122
+ "eval_cer": 0.9598094788222327,
123
+ "eval_loss": 4.560794830322266,
124
+ "eval_runtime": 41.0352,
125
+ "eval_samples_per_second": 11.112,
126
+ "eval_steps_per_second": 1.389,
127
+ "eval_wer": 0.9992449411054062,
128
+ "step": 1500
129
+ },
130
+ {
131
+ "epoch": 2.3,
132
+ "learning_rate": 5.9925e-05,
133
+ "loss": 4.4704,
134
+ "step": 1600
135
+ },
136
+ {
137
+ "epoch": 2.45,
138
+ "learning_rate": 6.367499999999999e-05,
139
+ "loss": 4.3806,
140
+ "step": 1700
141
+ },
142
+ {
143
+ "epoch": 2.59,
144
+ "learning_rate": 6.7425e-05,
145
+ "loss": 4.3092,
146
+ "step": 1800
147
+ },
148
+ {
149
+ "epoch": 2.73,
150
+ "learning_rate": 7.1175e-05,
151
+ "loss": 4.2794,
152
+ "step": 1900
153
+ },
154
+ {
155
+ "epoch": 2.88,
156
+ "learning_rate": 7.492499999999999e-05,
157
+ "loss": 4.254,
158
+ "step": 2000
159
+ },
160
+ {
161
+ "epoch": 2.88,
162
+ "eval_cer": 0.906274602424815,
163
+ "eval_loss": 4.272861003875732,
164
+ "eval_runtime": 40.8387,
165
+ "eval_samples_per_second": 11.166,
166
+ "eval_steps_per_second": 1.396,
167
+ "eval_wer": 0.9954696466324373,
168
+ "step": 2000
169
+ },
170
+ {
171
+ "epoch": 3.02,
172
+ "learning_rate": 7.477557251908395e-05,
173
+ "loss": 4.2616,
174
+ "step": 2100
175
+ },
176
+ {
177
+ "epoch": 3.17,
178
+ "learning_rate": 7.454656488549618e-05,
179
+ "loss": 4.2184,
180
+ "step": 2200
181
+ },
182
+ {
183
+ "epoch": 3.31,
184
+ "learning_rate": 7.43175572519084e-05,
185
+ "loss": 4.227,
186
+ "step": 2300
187
+ },
188
+ {
189
+ "epoch": 3.45,
190
+ "learning_rate": 7.408854961832061e-05,
191
+ "loss": 4.1985,
192
+ "step": 2400
193
+ },
194
+ {
195
+ "epoch": 3.6,
196
+ "learning_rate": 7.385954198473281e-05,
197
+ "loss": 4.1905,
198
+ "step": 2500
199
+ },
200
+ {
201
+ "epoch": 3.6,
202
+ "eval_cer": 0.8758463234136357,
203
+ "eval_loss": 4.225706100463867,
204
+ "eval_runtime": 40.6017,
205
+ "eval_samples_per_second": 11.231,
206
+ "eval_steps_per_second": 1.404,
207
+ "eval_wer": 0.9903352461491997,
208
+ "step": 2500
209
+ },
210
+ {
211
+ "epoch": 3.74,
212
+ "learning_rate": 7.36328244274809e-05,
213
+ "loss": 4.1873,
214
+ "step": 2600
215
+ },
216
+ {
217
+ "epoch": 3.88,
218
+ "learning_rate": 7.340381679389312e-05,
219
+ "loss": 4.1615,
220
+ "step": 2700
221
+ },
222
+ {
223
+ "epoch": 4.03,
224
+ "learning_rate": 7.317480916030534e-05,
225
+ "loss": 4.157,
226
+ "step": 2800
227
+ },
228
+ {
229
+ "epoch": 4.17,
230
+ "learning_rate": 7.294580152671756e-05,
231
+ "loss": 4.1124,
232
+ "step": 2900
233
+ },
234
+ {
235
+ "epoch": 4.32,
236
+ "learning_rate": 7.271679389312976e-05,
237
+ "loss": 4.0683,
238
+ "step": 3000
239
+ },
240
+ {
241
+ "epoch": 4.32,
242
+ "eval_cer": 0.7911352542906629,
243
+ "eval_loss": 3.929443120956421,
244
+ "eval_runtime": 41.2715,
245
+ "eval_samples_per_second": 11.049,
246
+ "eval_steps_per_second": 1.381,
247
+ "eval_wer": 0.9936575052854123,
248
+ "step": 3000
249
+ },
250
+ {
251
+ "epoch": 4.46,
252
+ "learning_rate": 7.248778625954197e-05,
253
+ "loss": 4.0704,
254
+ "step": 3100
255
+ },
256
+ {
257
+ "epoch": 4.6,
258
+ "learning_rate": 7.22587786259542e-05,
259
+ "loss": 3.9616,
260
+ "step": 3200
261
+ },
262
+ {
263
+ "epoch": 4.75,
264
+ "learning_rate": 7.202977099236641e-05,
265
+ "loss": 3.7798,
266
+ "step": 3300
267
+ },
268
+ {
269
+ "epoch": 4.89,
270
+ "learning_rate": 7.180076335877862e-05,
271
+ "loss": 3.6123,
272
+ "step": 3400
273
+ },
274
+ {
275
+ "epoch": 5.04,
276
+ "learning_rate": 7.15740458015267e-05,
277
+ "loss": 3.486,
278
+ "step": 3500
279
+ },
280
+ {
281
+ "epoch": 5.04,
282
+ "eval_cer": 0.5933711226578492,
283
+ "eval_loss": 2.704545497894287,
284
+ "eval_runtime": 40.8408,
285
+ "eval_samples_per_second": 11.165,
286
+ "eval_steps_per_second": 1.396,
287
+ "eval_wer": 1.0012080942313502,
288
+ "step": 3500
289
+ },
290
+ {
291
+ "epoch": 5.18,
292
+ "learning_rate": 7.134503816793892e-05,
293
+ "loss": 3.3283,
294
+ "step": 3600
295
+ },
296
+ {
297
+ "epoch": 5.32,
298
+ "learning_rate": 7.111603053435114e-05,
299
+ "loss": 3.2091,
300
+ "step": 3700
301
+ },
302
+ {
303
+ "epoch": 5.47,
304
+ "learning_rate": 7.088931297709923e-05,
305
+ "loss": 3.1158,
306
+ "step": 3800
307
+ },
308
+ {
309
+ "epoch": 5.61,
310
+ "learning_rate": 7.066030534351145e-05,
311
+ "loss": 2.9983,
312
+ "step": 3900
313
+ },
314
+ {
315
+ "epoch": 5.75,
316
+ "learning_rate": 7.043129770992365e-05,
317
+ "loss": 2.946,
318
+ "step": 4000
319
+ },
320
+ {
321
+ "epoch": 5.75,
322
+ "eval_cer": 0.4634309557549992,
323
+ "eval_loss": 1.9690674543380737,
324
+ "eval_runtime": 40.879,
325
+ "eval_samples_per_second": 11.155,
326
+ "eval_steps_per_second": 1.394,
327
+ "eval_wer": 0.942464512231954,
328
+ "step": 4000
329
+ },
330
+ {
331
+ "epoch": 5.9,
332
+ "learning_rate": 7.020229007633587e-05,
333
+ "loss": 2.8545,
334
+ "step": 4100
335
+ },
336
+ {
337
+ "epoch": 6.04,
338
+ "learning_rate": 6.997328244274808e-05,
339
+ "loss": 2.8092,
340
+ "step": 4200
341
+ },
342
+ {
343
+ "epoch": 6.19,
344
+ "learning_rate": 6.97442748091603e-05,
345
+ "loss": 2.7229,
346
+ "step": 4300
347
+ },
348
+ {
349
+ "epoch": 6.33,
350
+ "learning_rate": 6.951526717557252e-05,
351
+ "loss": 2.7053,
352
+ "step": 4400
353
+ },
354
+ {
355
+ "epoch": 6.47,
356
+ "learning_rate": 6.928625954198472e-05,
357
+ "loss": 2.634,
358
+ "step": 4500
359
+ },
360
+ {
361
+ "epoch": 6.47,
362
+ "eval_cer": 0.38501810738466385,
363
+ "eval_loss": 1.521231770515442,
364
+ "eval_runtime": 41.5435,
365
+ "eval_samples_per_second": 10.976,
366
+ "eval_steps_per_second": 1.372,
367
+ "eval_wer": 0.880700694654183,
368
+ "step": 4500
369
+ },
370
+ {
371
+ "epoch": 6.62,
372
+ "learning_rate": 6.905725190839693e-05,
373
+ "loss": 2.5996,
374
+ "step": 4600
375
+ },
376
+ {
377
+ "epoch": 6.76,
378
+ "learning_rate": 6.882824427480916e-05,
379
+ "loss": 2.5472,
380
+ "step": 4700
381
+ },
382
+ {
383
+ "epoch": 6.91,
384
+ "learning_rate": 6.859923664122137e-05,
385
+ "loss": 2.4959,
386
+ "step": 4800
387
+ },
388
+ {
389
+ "epoch": 7.05,
390
+ "learning_rate": 6.837022900763359e-05,
391
+ "loss": 2.4554,
392
+ "step": 4900
393
+ },
394
+ {
395
+ "epoch": 7.19,
396
+ "learning_rate": 6.814122137404579e-05,
397
+ "loss": 2.4066,
398
+ "step": 5000
399
+ },
400
+ {
401
+ "epoch": 7.19,
402
+ "eval_cer": 0.36014013541174617,
403
+ "eval_loss": 1.2550952434539795,
404
+ "eval_runtime": 41.0408,
405
+ "eval_samples_per_second": 11.111,
406
+ "eval_steps_per_second": 1.389,
407
+ "eval_wer": 0.8177287828450619,
408
+ "step": 5000
409
+ },
410
+ {
411
+ "epoch": 7.34,
412
+ "learning_rate": 6.791221374045801e-05,
413
+ "loss": 2.3768,
414
+ "step": 5100
415
+ },
416
+ {
417
+ "epoch": 7.48,
418
+ "learning_rate": 6.768320610687023e-05,
419
+ "loss": 2.3557,
420
+ "step": 5200
421
+ },
422
+ {
423
+ "epoch": 7.63,
424
+ "learning_rate": 6.745419847328244e-05,
425
+ "loss": 2.3109,
426
+ "step": 5300
427
+ },
428
+ {
429
+ "epoch": 7.77,
430
+ "learning_rate": 6.722519083969465e-05,
431
+ "loss": 2.2953,
432
+ "step": 5400
433
+ },
434
+ {
435
+ "epoch": 7.91,
436
+ "learning_rate": 6.699618320610687e-05,
437
+ "loss": 2.2651,
438
+ "step": 5500
439
+ },
440
+ {
441
+ "epoch": 7.91,
442
+ "eval_cer": 0.30392851519445757,
443
+ "eval_loss": 1.0423332452774048,
444
+ "eval_runtime": 40.9098,
445
+ "eval_samples_per_second": 11.146,
446
+ "eval_steps_per_second": 1.393,
447
+ "eval_wer": 0.7650256720024162,
448
+ "step": 5500
449
+ },
450
+ {
451
+ "epoch": 8.06,
452
+ "learning_rate": 6.676717557251908e-05,
453
+ "loss": 2.2589,
454
+ "step": 5600
455
+ },
456
+ {
457
+ "epoch": 8.2,
458
+ "learning_rate": 6.654045801526718e-05,
459
+ "loss": 2.2122,
460
+ "step": 5700
461
+ },
462
+ {
463
+ "epoch": 8.34,
464
+ "learning_rate": 6.631145038167939e-05,
465
+ "loss": 2.2017,
466
+ "step": 5800
467
+ },
468
+ {
469
+ "epoch": 8.49,
470
+ "learning_rate": 6.60824427480916e-05,
471
+ "loss": 2.1814,
472
+ "step": 5900
473
+ },
474
+ {
475
+ "epoch": 8.63,
476
+ "learning_rate": 6.58534351145038e-05,
477
+ "loss": 2.1828,
478
+ "step": 6000
479
+ },
480
+ {
481
+ "epoch": 8.63,
482
+ "eval_cer": 0.3106203747441348,
483
+ "eval_loss": 0.9598844051361084,
484
+ "eval_runtime": 41.4743,
485
+ "eval_samples_per_second": 10.995,
486
+ "eval_steps_per_second": 1.374,
487
+ "eval_wer": 0.7272727272727273,
488
+ "step": 6000
489
+ },
490
+ {
491
+ "epoch": 8.78,
492
+ "learning_rate": 6.562442748091603e-05,
493
+ "loss": 2.1714,
494
+ "step": 6100
495
+ },
496
+ {
497
+ "epoch": 8.92,
498
+ "learning_rate": 6.539541984732824e-05,
499
+ "loss": 2.1422,
500
+ "step": 6200
501
+ },
502
+ {
503
+ "epoch": 9.06,
504
+ "learning_rate": 6.516641221374046e-05,
505
+ "loss": 2.1546,
506
+ "step": 6300
507
+ },
508
+ {
509
+ "epoch": 9.21,
510
+ "learning_rate": 6.493740458015267e-05,
511
+ "loss": 2.12,
512
+ "step": 6400
513
+ },
514
+ {
515
+ "epoch": 9.35,
516
+ "learning_rate": 6.470839694656488e-05,
517
+ "loss": 2.1023,
518
+ "step": 6500
519
+ },
520
+ {
521
+ "epoch": 9.35,
522
+ "eval_cer": 0.30632971185640057,
523
+ "eval_loss": 0.9481843113899231,
524
+ "eval_runtime": 41.1867,
525
+ "eval_samples_per_second": 11.072,
526
+ "eval_steps_per_second": 1.384,
527
+ "eval_wer": 0.7160978556327393,
528
+ "step": 6500
529
+ },
530
+ {
531
+ "epoch": 9.5,
532
+ "learning_rate": 6.44793893129771e-05,
533
+ "loss": 2.1104,
534
+ "step": 6600
535
+ },
536
+ {
537
+ "epoch": 9.64,
538
+ "learning_rate": 6.425038167938931e-05,
539
+ "loss": 2.0879,
540
+ "step": 6700
541
+ },
542
+ {
543
+ "epoch": 9.78,
544
+ "learning_rate": 6.402137404580152e-05,
545
+ "loss": 2.0724,
546
+ "step": 6800
547
+ },
548
+ {
549
+ "epoch": 9.93,
550
+ "learning_rate": 6.379236641221374e-05,
551
+ "loss": 2.0622,
552
+ "step": 6900
553
+ },
554
+ {
555
+ "epoch": 10.07,
556
+ "learning_rate": 6.356335877862595e-05,
557
+ "loss": 2.0536,
558
+ "step": 7000
559
+ },
560
+ {
561
+ "epoch": 10.07,
562
+ "eval_cer": 0.28597858604944104,
563
+ "eval_loss": 0.8241907954216003,
564
+ "eval_runtime": 41.2837,
565
+ "eval_samples_per_second": 11.046,
566
+ "eval_steps_per_second": 1.381,
567
+ "eval_wer": 0.6766837813349441,
568
+ "step": 7000
569
+ },
570
+ {
571
+ "epoch": 10.22,
572
+ "learning_rate": 6.333435114503816e-05,
573
+ "loss": 2.0258,
574
+ "step": 7100
575
+ },
576
+ {
577
+ "epoch": 10.36,
578
+ "learning_rate": 6.310534351145038e-05,
579
+ "loss": 2.038,
580
+ "step": 7200
581
+ },
582
+ {
583
+ "epoch": 10.5,
584
+ "learning_rate": 6.287633587786259e-05,
585
+ "loss": 2.0093,
586
+ "step": 7300
587
+ },
588
+ {
589
+ "epoch": 10.65,
590
+ "learning_rate": 6.26473282442748e-05,
591
+ "loss": 1.9839,
592
+ "step": 7400
593
+ },
594
+ {
595
+ "epoch": 10.79,
596
+ "learning_rate": 6.241832061068702e-05,
597
+ "loss": 1.9803,
598
+ "step": 7500
599
+ },
600
+ {
601
+ "epoch": 10.79,
602
+ "eval_cer": 0.2636592662572823,
603
+ "eval_loss": 0.7643126845359802,
604
+ "eval_runtime": 41.3574,
605
+ "eval_samples_per_second": 11.026,
606
+ "eval_steps_per_second": 1.378,
607
+ "eval_wer": 0.6562971911809121,
608
+ "step": 7500
609
+ },
610
+ {
611
+ "epoch": 10.93,
612
+ "learning_rate": 6.218931297709923e-05,
613
+ "loss": 1.9704,
614
+ "step": 7600
615
+ },
616
+ {
617
+ "epoch": 11.08,
618
+ "learning_rate": 6.196030534351144e-05,
619
+ "loss": 1.9923,
620
+ "step": 7700
621
+ },
622
+ {
623
+ "epoch": 11.22,
624
+ "learning_rate": 6.173129770992366e-05,
625
+ "loss": 1.9549,
626
+ "step": 7800
627
+ },
628
+ {
629
+ "epoch": 11.37,
630
+ "learning_rate": 6.150229007633587e-05,
631
+ "loss": 1.9339,
632
+ "step": 7900
633
+ },
634
+ {
635
+ "epoch": 11.51,
636
+ "learning_rate": 6.127328244274808e-05,
637
+ "loss": 1.9468,
638
+ "step": 8000
639
+ },
640
+ {
641
+ "epoch": 11.51,
642
+ "eval_cer": 0.25051173043615177,
643
+ "eval_loss": 0.7318933606147766,
644
+ "eval_runtime": 40.8808,
645
+ "eval_samples_per_second": 11.154,
646
+ "eval_steps_per_second": 1.394,
647
+ "eval_wer": 0.644065237088493,
648
+ "step": 8000
649
+ },
650
+ {
651
+ "epoch": 11.65,
652
+ "learning_rate": 6.10442748091603e-05,
653
+ "loss": 1.9691,
654
+ "step": 8100
655
+ },
656
+ {
657
+ "epoch": 11.8,
658
+ "learning_rate": 6.081526717557252e-05,
659
+ "loss": 1.9845,
660
+ "step": 8200
661
+ },
662
+ {
663
+ "epoch": 11.94,
664
+ "learning_rate": 6.0586259541984725e-05,
665
+ "loss": 1.9561,
666
+ "step": 8300
667
+ },
668
+ {
669
+ "epoch": 12.09,
670
+ "learning_rate": 6.035725190839694e-05,
671
+ "loss": 1.9486,
672
+ "step": 8400
673
+ },
674
+ {
675
+ "epoch": 12.23,
676
+ "learning_rate": 6.012824427480916e-05,
677
+ "loss": 1.9178,
678
+ "step": 8500
679
+ },
680
+ {
681
+ "epoch": 12.23,
682
+ "eval_cer": 0.24893717524799244,
683
+ "eval_loss": 0.6936821937561035,
684
+ "eval_runtime": 41.1829,
685
+ "eval_samples_per_second": 11.073,
686
+ "eval_steps_per_second": 1.384,
687
+ "eval_wer": 0.6319842947749924,
688
+ "step": 8500
689
+ },
690
+ {
691
+ "epoch": 12.37,
692
+ "learning_rate": 5.989923664122137e-05,
693
+ "loss": 1.9133,
694
+ "step": 8600
695
+ },
696
+ {
697
+ "epoch": 12.52,
698
+ "learning_rate": 5.9670229007633586e-05,
699
+ "loss": 1.9327,
700
+ "step": 8700
701
+ },
702
+ {
703
+ "epoch": 12.66,
704
+ "learning_rate": 5.944122137404579e-05,
705
+ "loss": 1.8749,
706
+ "step": 8800
707
+ },
708
+ {
709
+ "epoch": 12.8,
710
+ "learning_rate": 5.9212213740458006e-05,
711
+ "loss": 1.8775,
712
+ "step": 8900
713
+ },
714
+ {
715
+ "epoch": 12.95,
716
+ "learning_rate": 5.8983206106870226e-05,
717
+ "loss": 1.8515,
718
+ "step": 9000
719
+ },
720
+ {
721
+ "epoch": 12.95,
722
+ "eval_cer": 0.21961108486852465,
723
+ "eval_loss": 0.6443303823471069,
724
+ "eval_runtime": 40.5279,
725
+ "eval_samples_per_second": 11.252,
726
+ "eval_steps_per_second": 1.406,
727
+ "eval_wer": 0.6052552099063727,
728
+ "step": 9000
729
+ },
730
+ {
731
+ "epoch": 13.09,
732
+ "learning_rate": 5.875419847328244e-05,
733
+ "loss": 1.8554,
734
+ "step": 9100
735
+ },
736
+ {
737
+ "epoch": 13.24,
738
+ "learning_rate": 5.852519083969465e-05,
739
+ "loss": 1.8568,
740
+ "step": 9200
741
+ },
742
+ {
743
+ "epoch": 13.38,
744
+ "learning_rate": 5.829618320610686e-05,
745
+ "loss": 1.8477,
746
+ "step": 9300
747
+ },
748
+ {
749
+ "epoch": 13.52,
750
+ "learning_rate": 5.806717557251908e-05,
751
+ "loss": 1.8328,
752
+ "step": 9400
753
+ },
754
+ {
755
+ "epoch": 13.67,
756
+ "learning_rate": 5.783816793893129e-05,
757
+ "loss": 1.8083,
758
+ "step": 9500
759
+ },
760
+ {
761
+ "epoch": 13.67,
762
+ "eval_cer": 0.21484805542434263,
763
+ "eval_loss": 0.6285760402679443,
764
+ "eval_runtime": 41.6653,
765
+ "eval_samples_per_second": 10.944,
766
+ "eval_steps_per_second": 1.368,
767
+ "eval_wer": 0.6122017517366355,
768
+ "step": 9500
769
+ },
770
+ {
771
+ "epoch": 13.81,
772
+ "learning_rate": 5.760916030534351e-05,
773
+ "loss": 1.8236,
774
+ "step": 9600
775
+ },
776
+ {
777
+ "epoch": 13.96,
778
+ "learning_rate": 5.738015267175571e-05,
779
+ "loss": 1.8199,
780
+ "step": 9700
781
+ },
782
+ {
783
+ "epoch": 14.1,
784
+ "learning_rate": 5.7151145038167934e-05,
785
+ "loss": 1.8285,
786
+ "step": 9800
787
+ },
788
+ {
789
+ "epoch": 14.24,
790
+ "learning_rate": 5.692213740458015e-05,
791
+ "loss": 1.817,
792
+ "step": 9900
793
+ },
794
+ {
795
+ "epoch": 14.39,
796
+ "learning_rate": 5.669312977099236e-05,
797
+ "loss": 1.819,
798
+ "step": 10000
799
+ },
800
+ {
801
+ "epoch": 14.39,
802
+ "eval_cer": 0.2074476460399937,
803
+ "eval_loss": 0.6015097498893738,
804
+ "eval_runtime": 41.6458,
805
+ "eval_samples_per_second": 10.949,
806
+ "eval_steps_per_second": 1.369,
807
+ "eval_wer": 0.5986106916339474,
808
+ "step": 10000
809
+ },
810
+ {
811
+ "epoch": 14.53,
812
+ "learning_rate": 5.6466412213740455e-05,
813
+ "loss": 1.7952,
814
+ "step": 10100
815
+ },
816
+ {
817
+ "epoch": 14.68,
818
+ "learning_rate": 5.623740458015266e-05,
819
+ "loss": 1.7955,
820
+ "step": 10200
821
+ },
822
+ {
823
+ "epoch": 14.82,
824
+ "learning_rate": 5.600839694656488e-05,
825
+ "loss": 1.7878,
826
+ "step": 10300
827
+ },
828
+ {
829
+ "epoch": 14.96,
830
+ "learning_rate": 5.5779389312977095e-05,
831
+ "loss": 1.769,
832
+ "step": 10400
833
+ },
834
+ {
835
+ "epoch": 15.11,
836
+ "learning_rate": 5.555267175572519e-05,
837
+ "loss": 1.7684,
838
+ "step": 10500
839
+ },
840
+ {
841
+ "epoch": 15.11,
842
+ "eval_cer": 0.19815777042985355,
843
+ "eval_loss": 0.5682193636894226,
844
+ "eval_runtime": 41.2484,
845
+ "eval_samples_per_second": 11.055,
846
+ "eval_steps_per_second": 1.382,
847
+ "eval_wer": 0.5741467834491091,
848
+ "step": 10500
849
+ },
850
+ {
851
+ "epoch": 15.25,
852
+ "learning_rate": 5.53236641221374e-05,
853
+ "loss": 1.7626,
854
+ "step": 10600
855
+ },
856
+ {
857
+ "epoch": 15.4,
858
+ "learning_rate": 5.5094656488549616e-05,
859
+ "loss": 1.7582,
860
+ "step": 10700
861
+ },
862
+ {
863
+ "epoch": 15.54,
864
+ "learning_rate": 5.486564885496182e-05,
865
+ "loss": 1.75,
866
+ "step": 10800
867
+ },
868
+ {
869
+ "epoch": 15.68,
870
+ "learning_rate": 5.463664122137404e-05,
871
+ "loss": 1.735,
872
+ "step": 10900
873
+ },
874
+ {
875
+ "epoch": 15.83,
876
+ "learning_rate": 5.4407633587786256e-05,
877
+ "loss": 1.7195,
878
+ "step": 11000
879
+ },
880
+ {
881
+ "epoch": 15.83,
882
+ "eval_cer": 0.20067705873090852,
883
+ "eval_loss": 0.5385124683380127,
884
+ "eval_runtime": 41.6481,
885
+ "eval_samples_per_second": 10.949,
886
+ "eval_steps_per_second": 1.369,
887
+ "eval_wer": 0.5591966173361522,
888
+ "step": 11000
889
+ },
890
+ {
891
+ "epoch": 15.97,
892
+ "learning_rate": 5.417862595419847e-05,
893
+ "loss": 1.7274,
894
+ "step": 11100
895
+ },
896
+ {
897
+ "epoch": 16.11,
898
+ "learning_rate": 5.3949618320610677e-05,
899
+ "loss": 1.7183,
900
+ "step": 11200
901
+ },
902
+ {
903
+ "epoch": 16.26,
904
+ "learning_rate": 5.37206106870229e-05,
905
+ "loss": 1.7117,
906
+ "step": 11300
907
+ },
908
+ {
909
+ "epoch": 16.4,
910
+ "learning_rate": 5.349160305343511e-05,
911
+ "loss": 1.6918,
912
+ "step": 11400
913
+ },
914
+ {
915
+ "epoch": 16.55,
916
+ "learning_rate": 5.3262595419847324e-05,
917
+ "loss": 1.7044,
918
+ "step": 11500
919
+ },
920
+ {
921
+ "epoch": 16.55,
922
+ "eval_cer": 0.20965202330341678,
923
+ "eval_loss": 0.5361923575401306,
924
+ "eval_runtime": 41.5242,
925
+ "eval_samples_per_second": 10.982,
926
+ "eval_steps_per_second": 1.373,
927
+ "eval_wer": 0.5524010872848082,
928
+ "step": 11500
929
+ },
930
+ {
931
+ "epoch": 16.69,
932
+ "learning_rate": 5.303358778625954e-05,
933
+ "loss": 1.7134,
934
+ "step": 11600
935
+ },
936
+ {
937
+ "epoch": 16.83,
938
+ "learning_rate": 5.280458015267176e-05,
939
+ "loss": 1.7016,
940
+ "step": 11700
941
+ },
942
+ {
943
+ "epoch": 16.98,
944
+ "learning_rate": 5.2575572519083964e-05,
945
+ "loss": 1.7069,
946
+ "step": 11800
947
+ },
948
+ {
949
+ "epoch": 17.12,
950
+ "learning_rate": 5.234656488549618e-05,
951
+ "loss": 1.7046,
952
+ "step": 11900
953
+ },
954
+ {
955
+ "epoch": 17.27,
956
+ "learning_rate": 5.211755725190839e-05,
957
+ "loss": 1.6879,
958
+ "step": 12000
959
+ },
960
+ {
961
+ "epoch": 17.27,
962
+ "eval_cer": 0.20831365139348135,
963
+ "eval_loss": 0.5119141936302185,
964
+ "eval_runtime": 40.4618,
965
+ "eval_samples_per_second": 11.27,
966
+ "eval_steps_per_second": 1.409,
967
+ "eval_wer": 0.5489278163696768,
968
+ "step": 12000
969
+ },
970
+ {
971
+ "epoch": 17.41,
972
+ "learning_rate": 5.188854961832061e-05,
973
+ "loss": 1.681,
974
+ "step": 12100
975
+ },
976
+ {
977
+ "epoch": 17.55,
978
+ "learning_rate": 5.1659541984732825e-05,
979
+ "loss": 1.6683,
980
+ "step": 12200
981
+ },
982
+ {
983
+ "epoch": 17.7,
984
+ "learning_rate": 5.143053435114503e-05,
985
+ "loss": 1.655,
986
+ "step": 12300
987
+ },
988
+ {
989
+ "epoch": 17.84,
990
+ "learning_rate": 5.1201526717557245e-05,
991
+ "loss": 1.6604,
992
+ "step": 12400
993
+ },
994
+ {
995
+ "epoch": 17.98,
996
+ "learning_rate": 5.0972519083969465e-05,
997
+ "loss": 1.656,
998
+ "step": 12500
999
+ },
1000
+ {
1001
+ "epoch": 17.98,
1002
+ "eval_cer": 0.19678003464021415,
1003
+ "eval_loss": 0.4990406930446625,
1004
+ "eval_runtime": 40.5826,
1005
+ "eval_samples_per_second": 11.236,
1006
+ "eval_steps_per_second": 1.405,
1007
+ "eval_wer": 0.5362428269405014,
1008
+ "step": 12500
1009
+ },
1010
+ {
1011
+ "epoch": 18.13,
1012
+ "learning_rate": 5.074351145038168e-05,
1013
+ "loss": 1.6645,
1014
+ "step": 12600
1015
+ },
1016
+ {
1017
+ "epoch": 18.27,
1018
+ "learning_rate": 5.051450381679389e-05,
1019
+ "loss": 1.6269,
1020
+ "step": 12700
1021
+ },
1022
+ {
1023
+ "epoch": 18.42,
1024
+ "learning_rate": 5.02854961832061e-05,
1025
+ "loss": 1.6306,
1026
+ "step": 12800
1027
+ },
1028
+ {
1029
+ "epoch": 18.56,
1030
+ "learning_rate": 5.005877862595419e-05,
1031
+ "loss": 1.6191,
1032
+ "step": 12900
1033
+ },
1034
+ {
1035
+ "epoch": 18.7,
1036
+ "learning_rate": 4.9829770992366406e-05,
1037
+ "loss": 1.6122,
1038
+ "step": 13000
1039
+ },
1040
+ {
1041
+ "epoch": 18.7,
1042
+ "eval_cer": 0.18997008345142496,
1043
+ "eval_loss": 0.45614466071128845,
1044
+ "eval_runtime": 41.2927,
1045
+ "eval_samples_per_second": 11.043,
1046
+ "eval_steps_per_second": 1.38,
1047
+ "eval_wer": 0.5092117185140441,
1048
+ "step": 13000
1049
+ },
1050
+ {
1051
+ "epoch": 18.85,
1052
+ "learning_rate": 4.9600763358778626e-05,
1053
+ "loss": 1.622,
1054
+ "step": 13100
1055
+ },
1056
+ {
1057
+ "epoch": 18.99,
1058
+ "learning_rate": 4.937175572519084e-05,
1059
+ "loss": 1.6305,
1060
+ "step": 13200
1061
+ },
1062
+ {
1063
+ "epoch": 19.14,
1064
+ "learning_rate": 4.9142748091603046e-05,
1065
+ "loss": 1.6134,
1066
+ "step": 13300
1067
+ },
1068
+ {
1069
+ "epoch": 19.28,
1070
+ "learning_rate": 4.891374045801526e-05,
1071
+ "loss": 1.6044,
1072
+ "step": 13400
1073
+ },
1074
+ {
1075
+ "epoch": 19.42,
1076
+ "learning_rate": 4.868473282442748e-05,
1077
+ "loss": 1.5919,
1078
+ "step": 13500
1079
+ },
1080
+ {
1081
+ "epoch": 19.42,
1082
+ "eval_cer": 0.19752794835458984,
1083
+ "eval_loss": 0.47778981924057007,
1084
+ "eval_runtime": 41.5758,
1085
+ "eval_samples_per_second": 10.968,
1086
+ "eval_steps_per_second": 1.371,
1087
+ "eval_wer": 0.5225007550588946,
1088
+ "step": 13500
1089
+ },
1090
+ {
1091
+ "epoch": 19.57,
1092
+ "learning_rate": 4.8455725190839694e-05,
1093
+ "loss": 1.595,
1094
+ "step": 13600
1095
+ },
1096
+ {
1097
+ "epoch": 19.71,
1098
+ "learning_rate": 4.822671755725191e-05,
1099
+ "loss": 1.5959,
1100
+ "step": 13700
1101
+ },
1102
+ {
1103
+ "epoch": 19.86,
1104
+ "learning_rate": 4.7997709923664114e-05,
1105
+ "loss": 1.6006,
1106
+ "step": 13800
1107
+ },
1108
+ {
1109
+ "epoch": 20.0,
1110
+ "learning_rate": 4.7768702290076334e-05,
1111
+ "loss": 1.5913,
1112
+ "step": 13900
1113
+ },
1114
+ {
1115
+ "epoch": 20.14,
1116
+ "learning_rate": 4.753969465648855e-05,
1117
+ "loss": 1.5896,
1118
+ "step": 14000
1119
+ },
1120
+ {
1121
+ "epoch": 20.14,
1122
+ "eval_cer": 0.18591560384191466,
1123
+ "eval_loss": 0.4563109278678894,
1124
+ "eval_runtime": 40.8794,
1125
+ "eval_samples_per_second": 11.155,
1126
+ "eval_steps_per_second": 1.394,
1127
+ "eval_wer": 0.5098157656297191,
1128
+ "step": 14000
1129
+ },
1130
+ {
1131
+ "epoch": 20.29,
1132
+ "learning_rate": 4.731068702290076e-05,
1133
+ "loss": 1.5823,
1134
+ "step": 14100
1135
+ },
1136
+ {
1137
+ "epoch": 20.43,
1138
+ "learning_rate": 4.708167938931297e-05,
1139
+ "loss": 1.5634,
1140
+ "step": 14200
1141
+ },
1142
+ {
1143
+ "epoch": 20.57,
1144
+ "learning_rate": 4.685267175572519e-05,
1145
+ "loss": 1.5573,
1146
+ "step": 14300
1147
+ },
1148
+ {
1149
+ "epoch": 20.72,
1150
+ "learning_rate": 4.66236641221374e-05,
1151
+ "loss": 1.5689,
1152
+ "step": 14400
1153
+ },
1154
+ {
1155
+ "epoch": 20.86,
1156
+ "learning_rate": 4.6394656488549615e-05,
1157
+ "loss": 1.5589,
1158
+ "step": 14500
1159
+ },
1160
+ {
1161
+ "epoch": 20.86,
1162
+ "eval_cer": 0.17249252086285624,
1163
+ "eval_loss": 0.43622052669525146,
1164
+ "eval_runtime": 41.7277,
1165
+ "eval_samples_per_second": 10.928,
1166
+ "eval_steps_per_second": 1.366,
1167
+ "eval_wer": 0.4939595288432498,
1168
+ "step": 14500
1169
+ },
1170
+ {
1171
+ "epoch": 21.01,
1172
+ "learning_rate": 4.616564885496183e-05,
1173
+ "loss": 1.5697,
1174
+ "step": 14600
1175
+ },
1176
+ {
1177
+ "epoch": 21.15,
1178
+ "learning_rate": 4.593664122137405e-05,
1179
+ "loss": 1.5336,
1180
+ "step": 14700
1181
+ },
1182
+ {
1183
+ "epoch": 21.29,
1184
+ "learning_rate": 4.5707633587786255e-05,
1185
+ "loss": 1.5425,
1186
+ "step": 14800
1187
+ },
1188
+ {
1189
+ "epoch": 21.44,
1190
+ "learning_rate": 4.547862595419847e-05,
1191
+ "loss": 1.5461,
1192
+ "step": 14900
1193
+ },
1194
+ {
1195
+ "epoch": 21.58,
1196
+ "learning_rate": 4.524961832061068e-05,
1197
+ "loss": 1.5353,
1198
+ "step": 15000
1199
+ },
1200
+ {
1201
+ "epoch": 21.58,
1202
+ "eval_cer": 0.15804597701149425,
1203
+ "eval_loss": 0.41395294666290283,
1204
+ "eval_runtime": 40.5257,
1205
+ "eval_samples_per_second": 11.252,
1206
+ "eval_steps_per_second": 1.407,
1207
+ "eval_wer": 0.4826336454243431,
1208
+ "step": 15000
1209
+ },
1210
+ {
1211
+ "epoch": 21.73,
1212
+ "learning_rate": 4.5020610687022895e-05,
1213
+ "loss": 1.5348,
1214
+ "step": 15100
1215
+ },
1216
+ {
1217
+ "epoch": 21.87,
1218
+ "learning_rate": 4.4791603053435116e-05,
1219
+ "loss": 1.5279,
1220
+ "step": 15200
1221
+ },
1222
+ {
1223
+ "epoch": 22.01,
1224
+ "learning_rate": 4.456259541984732e-05,
1225
+ "loss": 1.5492,
1226
+ "step": 15300
1227
+ },
1228
+ {
1229
+ "epoch": 22.16,
1230
+ "learning_rate": 4.4333587786259536e-05,
1231
+ "loss": 1.5291,
1232
+ "step": 15400
1233
+ },
1234
+ {
1235
+ "epoch": 22.3,
1236
+ "learning_rate": 4.410458015267175e-05,
1237
+ "loss": 1.5441,
1238
+ "step": 15500
1239
+ },
1240
+ {
1241
+ "epoch": 22.3,
1242
+ "eval_cer": 0.15501495827428752,
1243
+ "eval_loss": 0.40313535928726196,
1244
+ "eval_runtime": 41.0848,
1245
+ "eval_samples_per_second": 11.099,
1246
+ "eval_steps_per_second": 1.387,
1247
+ "eval_wer": 0.47417698580489276,
1248
+ "step": 15500
1249
+ },
1250
+ {
1251
+ "epoch": 22.45,
1252
+ "learning_rate": 4.387557251908397e-05,
1253
+ "loss": 1.518,
1254
+ "step": 15600
1255
+ },
1256
+ {
1257
+ "epoch": 22.59,
1258
+ "learning_rate": 4.364656488549618e-05,
1259
+ "loss": 1.5081,
1260
+ "step": 15700
1261
+ },
1262
+ {
1263
+ "epoch": 22.73,
1264
+ "learning_rate": 4.341755725190839e-05,
1265
+ "loss": 1.4959,
1266
+ "step": 15800
1267
+ },
1268
+ {
1269
+ "epoch": 22.88,
1270
+ "learning_rate": 4.31885496183206e-05,
1271
+ "loss": 1.5097,
1272
+ "step": 15900
1273
+ },
1274
+ {
1275
+ "epoch": 23.02,
1276
+ "learning_rate": 4.295954198473282e-05,
1277
+ "loss": 1.5116,
1278
+ "step": 16000
1279
+ },
1280
+ {
1281
+ "epoch": 23.02,
1282
+ "eval_cer": 0.15450322783813572,
1283
+ "eval_loss": 0.39162585139274597,
1284
+ "eval_runtime": 40.7373,
1285
+ "eval_samples_per_second": 11.194,
1286
+ "eval_steps_per_second": 1.399,
1287
+ "eval_wer": 0.4747810329205678,
1288
+ "step": 16000
1289
+ },
1290
+ {
1291
+ "epoch": 23.17,
1292
+ "learning_rate": 4.273053435114504e-05,
1293
+ "loss": 1.4951,
1294
+ "step": 16100
1295
+ },
1296
+ {
1297
+ "epoch": 23.31,
1298
+ "learning_rate": 4.250152671755724e-05,
1299
+ "loss": 1.4974,
1300
+ "step": 16200
1301
+ },
1302
+ {
1303
+ "epoch": 23.45,
1304
+ "learning_rate": 4.227480916030534e-05,
1305
+ "loss": 1.5045,
1306
+ "step": 16300
1307
+ },
1308
+ {
1309
+ "epoch": 23.6,
1310
+ "learning_rate": 4.204580152671755e-05,
1311
+ "loss": 1.4944,
1312
+ "step": 16400
1313
+ },
1314
+ {
1315
+ "epoch": 23.74,
1316
+ "learning_rate": 4.181679389312977e-05,
1317
+ "loss": 1.4731,
1318
+ "step": 16500
1319
+ },
1320
+ {
1321
+ "epoch": 23.74,
1322
+ "eval_cer": 0.15422768068020784,
1323
+ "eval_loss": 0.3840835392475128,
1324
+ "eval_runtime": 40.8763,
1325
+ "eval_samples_per_second": 11.156,
1326
+ "eval_steps_per_second": 1.394,
1327
+ "eval_wer": 0.4809725158562368,
1328
+ "step": 16500
1329
+ },
1330
+ {
1331
+ "epoch": 23.88,
1332
+ "learning_rate": 4.1587786259541985e-05,
1333
+ "loss": 1.472,
1334
+ "step": 16600
1335
+ },
1336
+ {
1337
+ "epoch": 24.03,
1338
+ "learning_rate": 4.13587786259542e-05,
1339
+ "loss": 1.4847,
1340
+ "step": 16700
1341
+ },
1342
+ {
1343
+ "epoch": 24.17,
1344
+ "learning_rate": 4.1129770992366405e-05,
1345
+ "loss": 1.4603,
1346
+ "step": 16800
1347
+ },
1348
+ {
1349
+ "epoch": 24.32,
1350
+ "learning_rate": 4.090076335877862e-05,
1351
+ "loss": 1.4563,
1352
+ "step": 16900
1353
+ },
1354
+ {
1355
+ "epoch": 24.46,
1356
+ "learning_rate": 4.067175572519084e-05,
1357
+ "loss": 1.4647,
1358
+ "step": 17000
1359
+ },
1360
+ {
1361
+ "epoch": 24.46,
1362
+ "eval_cer": 0.14753582113053063,
1363
+ "eval_loss": 0.37518319487571716,
1364
+ "eval_runtime": 41.0205,
1365
+ "eval_samples_per_second": 11.116,
1366
+ "eval_steps_per_second": 1.39,
1367
+ "eval_wer": 0.452431289640592,
1368
+ "step": 17000
1369
+ },
1370
+ {
1371
+ "epoch": 24.6,
1372
+ "learning_rate": 4.044274809160305e-05,
1373
+ "loss": 1.4585,
1374
+ "step": 17100
1375
+ },
1376
+ {
1377
+ "epoch": 24.75,
1378
+ "learning_rate": 4.021374045801526e-05,
1379
+ "loss": 1.4692,
1380
+ "step": 17200
1381
+ },
1382
+ {
1383
+ "epoch": 24.89,
1384
+ "learning_rate": 3.998473282442747e-05,
1385
+ "loss": 1.444,
1386
+ "step": 17300
1387
+ },
1388
+ {
1389
+ "epoch": 25.04,
1390
+ "learning_rate": 3.975572519083969e-05,
1391
+ "loss": 1.4717,
1392
+ "step": 17400
1393
+ },
1394
+ {
1395
+ "epoch": 25.18,
1396
+ "learning_rate": 3.9526717557251906e-05,
1397
+ "loss": 1.4328,
1398
+ "step": 17500
1399
+ },
1400
+ {
1401
+ "epoch": 25.18,
1402
+ "eval_cer": 0.1461187214611872,
1403
+ "eval_loss": 0.35870596766471863,
1404
+ "eval_runtime": 40.6723,
1405
+ "eval_samples_per_second": 11.212,
1406
+ "eval_steps_per_second": 1.401,
1407
+ "eval_wer": 0.4475989127151918,
1408
+ "step": 17500
1409
+ },
1410
+ {
1411
+ "epoch": 25.32,
1412
+ "learning_rate": 3.929770992366412e-05,
1413
+ "loss": 1.4329,
1414
+ "step": 17600
1415
+ },
1416
+ {
1417
+ "epoch": 25.47,
1418
+ "learning_rate": 3.9068702290076326e-05,
1419
+ "loss": 1.4209,
1420
+ "step": 17700
1421
+ },
1422
+ {
1423
+ "epoch": 25.61,
1424
+ "learning_rate": 3.884198473282442e-05,
1425
+ "loss": 1.4188,
1426
+ "step": 17800
1427
+ },
1428
+ {
1429
+ "epoch": 25.75,
1430
+ "learning_rate": 3.861297709923664e-05,
1431
+ "loss": 1.4301,
1432
+ "step": 17900
1433
+ },
1434
+ {
1435
+ "epoch": 25.9,
1436
+ "learning_rate": 3.8383969465648854e-05,
1437
+ "loss": 1.4129,
1438
+ "step": 18000
1439
+ },
1440
+ {
1441
+ "epoch": 25.9,
1442
+ "eval_cer": 0.13663202645252717,
1443
+ "eval_loss": 0.3428773581981659,
1444
+ "eval_runtime": 42.0192,
1445
+ "eval_samples_per_second": 10.852,
1446
+ "eval_steps_per_second": 1.357,
1447
+ "eval_wer": 0.42419208698278466,
1448
+ "step": 18000
1449
+ },
1450
+ {
1451
+ "epoch": 26.04,
1452
+ "learning_rate": 3.815496183206107e-05,
1453
+ "loss": 1.4266,
1454
+ "step": 18100
1455
+ },
1456
+ {
1457
+ "epoch": 26.19,
1458
+ "learning_rate": 3.7925954198473274e-05,
1459
+ "loss": 1.4166,
1460
+ "step": 18200
1461
+ },
1462
+ {
1463
+ "epoch": 26.33,
1464
+ "learning_rate": 3.7696946564885494e-05,
1465
+ "loss": 1.4157,
1466
+ "step": 18300
1467
+ },
1468
+ {
1469
+ "epoch": 26.47,
1470
+ "learning_rate": 3.746793893129771e-05,
1471
+ "loss": 1.4285,
1472
+ "step": 18400
1473
+ },
1474
+ {
1475
+ "epoch": 26.62,
1476
+ "learning_rate": 3.723893129770992e-05,
1477
+ "loss": 1.4062,
1478
+ "step": 18500
1479
+ },
1480
+ {
1481
+ "epoch": 26.62,
1482
+ "eval_cer": 0.13549047394111163,
1483
+ "eval_loss": 0.34499478340148926,
1484
+ "eval_runtime": 41.0336,
1485
+ "eval_samples_per_second": 11.113,
1486
+ "eval_steps_per_second": 1.389,
1487
+ "eval_wer": 0.4250981576562972,
1488
+ "step": 18500
1489
+ },
1490
+ {
1491
+ "epoch": 26.76,
1492
+ "learning_rate": 3.7009923664122134e-05,
1493
+ "loss": 1.4163,
1494
+ "step": 18600
1495
+ },
1496
+ {
1497
+ "epoch": 26.91,
1498
+ "learning_rate": 3.678091603053435e-05,
1499
+ "loss": 1.404,
1500
+ "step": 18700
1501
+ },
1502
+ {
1503
+ "epoch": 27.05,
1504
+ "learning_rate": 3.655190839694656e-05,
1505
+ "loss": 1.4134,
1506
+ "step": 18800
1507
+ },
1508
+ {
1509
+ "epoch": 27.19,
1510
+ "learning_rate": 3.6322900763358775e-05,
1511
+ "loss": 1.4001,
1512
+ "step": 18900
1513
+ },
1514
+ {
1515
+ "epoch": 27.34,
1516
+ "learning_rate": 3.609389312977099e-05,
1517
+ "loss": 1.3928,
1518
+ "step": 19000
1519
+ },
1520
+ {
1521
+ "epoch": 27.34,
1522
+ "eval_cer": 0.13218390804597702,
1523
+ "eval_loss": 0.32969579100608826,
1524
+ "eval_runtime": 41.0801,
1525
+ "eval_samples_per_second": 11.1,
1526
+ "eval_steps_per_second": 1.388,
1527
+ "eval_wer": 0.4145273331319843,
1528
+ "step": 19000
1529
+ },
1530
+ {
1531
+ "epoch": 27.48,
1532
+ "learning_rate": 3.58648854961832e-05,
1533
+ "loss": 1.3979,
1534
+ "step": 19100
1535
+ },
1536
+ {
1537
+ "epoch": 27.63,
1538
+ "learning_rate": 3.5635877862595415e-05,
1539
+ "loss": 1.3971,
1540
+ "step": 19200
1541
+ },
1542
+ {
1543
+ "epoch": 27.77,
1544
+ "learning_rate": 3.540687022900763e-05,
1545
+ "loss": 1.3934,
1546
+ "step": 19300
1547
+ },
1548
+ {
1549
+ "epoch": 27.91,
1550
+ "learning_rate": 3.517786259541984e-05,
1551
+ "loss": 1.3866,
1552
+ "step": 19400
1553
+ },
1554
+ {
1555
+ "epoch": 28.06,
1556
+ "learning_rate": 3.4948854961832055e-05,
1557
+ "loss": 1.3906,
1558
+ "step": 19500
1559
+ },
1560
+ {
1561
+ "epoch": 28.06,
1562
+ "eval_cer": 0.1336403715950244,
1563
+ "eval_loss": 0.32101842761039734,
1564
+ "eval_runtime": 41.0367,
1565
+ "eval_samples_per_second": 11.112,
1566
+ "eval_steps_per_second": 1.389,
1567
+ "eval_wer": 0.4184536393838719,
1568
+ "step": 19500
1569
+ },
1570
+ {
1571
+ "epoch": 28.2,
1572
+ "learning_rate": 3.471984732824427e-05,
1573
+ "loss": 1.3689,
1574
+ "step": 19600
1575
+ },
1576
+ {
1577
+ "epoch": 28.34,
1578
+ "learning_rate": 3.449083969465649e-05,
1579
+ "loss": 1.3715,
1580
+ "step": 19700
1581
+ },
1582
+ {
1583
+ "epoch": 28.49,
1584
+ "learning_rate": 3.4261832061068696e-05,
1585
+ "loss": 1.3527,
1586
+ "step": 19800
1587
+ },
1588
+ {
1589
+ "epoch": 28.63,
1590
+ "learning_rate": 3.4032824427480916e-05,
1591
+ "loss": 1.3532,
1592
+ "step": 19900
1593
+ },
1594
+ {
1595
+ "epoch": 28.78,
1596
+ "learning_rate": 3.380381679389312e-05,
1597
+ "loss": 1.358,
1598
+ "step": 20000
1599
+ },
1600
+ {
1601
+ "epoch": 28.78,
1602
+ "eval_cer": 0.12753897024090693,
1603
+ "eval_loss": 0.31306591629981995,
1604
+ "eval_runtime": 41.2359,
1605
+ "eval_samples_per_second": 11.058,
1606
+ "eval_steps_per_second": 1.382,
1607
+ "eval_wer": 0.39700996677740863,
1608
+ "step": 20000
1609
+ },
1610
+ {
1611
+ "epoch": 28.92,
1612
+ "learning_rate": 3.357480916030534e-05,
1613
+ "loss": 1.3582,
1614
+ "step": 20100
1615
+ },
1616
+ {
1617
+ "epoch": 29.06,
1618
+ "learning_rate": 3.334580152671755e-05,
1619
+ "loss": 1.3587,
1620
+ "step": 20200
1621
+ },
1622
+ {
1623
+ "epoch": 29.21,
1624
+ "learning_rate": 3.311679389312977e-05,
1625
+ "loss": 1.3392,
1626
+ "step": 20300
1627
+ },
1628
+ {
1629
+ "epoch": 29.35,
1630
+ "learning_rate": 3.288778625954198e-05,
1631
+ "loss": 1.3486,
1632
+ "step": 20400
1633
+ },
1634
+ {
1635
+ "epoch": 29.5,
1636
+ "learning_rate": 3.26587786259542e-05,
1637
+ "loss": 1.3445,
1638
+ "step": 20500
1639
+ },
1640
+ {
1641
+ "epoch": 29.5,
1642
+ "eval_cer": 0.12761769800031492,
1643
+ "eval_loss": 0.3069218099117279,
1644
+ "eval_runtime": 41.0687,
1645
+ "eval_samples_per_second": 11.103,
1646
+ "eval_steps_per_second": 1.388,
1647
+ "eval_wer": 0.3920265780730897,
1648
+ "step": 20500
1649
+ },
1650
+ {
1651
+ "epoch": 29.64,
1652
+ "learning_rate": 3.242977099236641e-05,
1653
+ "loss": 1.3354,
1654
+ "step": 20600
1655
+ },
1656
+ {
1657
+ "epoch": 29.78,
1658
+ "learning_rate": 3.2200763358778624e-05,
1659
+ "loss": 1.3334,
1660
+ "step": 20700
1661
+ },
1662
+ {
1663
+ "epoch": 29.93,
1664
+ "learning_rate": 3.197175572519084e-05,
1665
+ "loss": 1.3305,
1666
+ "step": 20800
1667
+ },
1668
+ {
1669
+ "epoch": 30.07,
1670
+ "learning_rate": 3.174274809160305e-05,
1671
+ "loss": 1.3354,
1672
+ "step": 20900
1673
+ },
1674
+ {
1675
+ "epoch": 30.22,
1676
+ "learning_rate": 3.1513740458015264e-05,
1677
+ "loss": 1.3159,
1678
+ "step": 21000
1679
+ },
1680
+ {
1681
+ "epoch": 30.22,
1682
+ "eval_cer": 0.1254920484962998,
1683
+ "eval_loss": 0.30346596240997314,
1684
+ "eval_runtime": 41.0784,
1685
+ "eval_samples_per_second": 11.101,
1686
+ "eval_steps_per_second": 1.388,
1687
+ "eval_wer": 0.3961038961038961,
1688
+ "step": 21000
1689
+ },
1690
+ {
1691
+ "epoch": 30.36,
1692
+ "learning_rate": 3.128473282442748e-05,
1693
+ "loss": 1.3376,
1694
+ "step": 21100
1695
+ },
1696
+ {
1697
+ "epoch": 30.5,
1698
+ "learning_rate": 3.105572519083969e-05,
1699
+ "loss": 1.324,
1700
+ "step": 21200
1701
+ },
1702
+ {
1703
+ "epoch": 30.65,
1704
+ "learning_rate": 3.0826717557251904e-05,
1705
+ "loss": 1.3091,
1706
+ "step": 21300
1707
+ },
1708
+ {
1709
+ "epoch": 30.79,
1710
+ "learning_rate": 3.059770992366412e-05,
1711
+ "loss": 1.3213,
1712
+ "step": 21400
1713
+ },
1714
+ {
1715
+ "epoch": 30.93,
1716
+ "learning_rate": 3.0368702290076335e-05,
1717
+ "loss": 1.3044,
1718
+ "step": 21500
1719
+ },
1720
+ {
1721
+ "epoch": 30.93,
1722
+ "eval_cer": 0.12423240434577232,
1723
+ "eval_loss": 0.29519879817962646,
1724
+ "eval_runtime": 41.1753,
1725
+ "eval_samples_per_second": 11.075,
1726
+ "eval_steps_per_second": 1.384,
1727
+ "eval_wer": 0.3853820598006645,
1728
+ "step": 21500
1729
+ },
1730
+ {
1731
+ "epoch": 31.08,
1732
+ "learning_rate": 3.0139694656488545e-05,
1733
+ "loss": 1.3033,
1734
+ "step": 21600
1735
+ },
1736
+ {
1737
+ "epoch": 31.22,
1738
+ "learning_rate": 2.991068702290076e-05,
1739
+ "loss": 1.2995,
1740
+ "step": 21700
1741
+ },
1742
+ {
1743
+ "epoch": 31.37,
1744
+ "learning_rate": 2.9681679389312975e-05,
1745
+ "loss": 1.3101,
1746
+ "step": 21800
1747
+ },
1748
+ {
1749
+ "epoch": 31.51,
1750
+ "learning_rate": 2.945267175572519e-05,
1751
+ "loss": 1.304,
1752
+ "step": 21900
1753
+ },
1754
+ {
1755
+ "epoch": 31.65,
1756
+ "learning_rate": 2.9223664122137402e-05,
1757
+ "loss": 1.3034,
1758
+ "step": 22000
1759
+ },
1760
+ {
1761
+ "epoch": 31.65,
1762
+ "eval_cer": 0.12273657691702095,
1763
+ "eval_loss": 0.29660850763320923,
1764
+ "eval_runtime": 41.8912,
1765
+ "eval_samples_per_second": 10.885,
1766
+ "eval_steps_per_second": 1.361,
1767
+ "eval_wer": 0.37722742373905166,
1768
+ "step": 22000
1769
+ },
1770
+ {
1771
+ "epoch": 31.8,
1772
+ "learning_rate": 2.8994656488549615e-05,
1773
+ "loss": 1.2912,
1774
+ "step": 22100
1775
+ },
1776
+ {
1777
+ "epoch": 31.94,
1778
+ "learning_rate": 2.876564885496183e-05,
1779
+ "loss": 1.299,
1780
+ "step": 22200
1781
+ },
1782
+ {
1783
+ "epoch": 32.09,
1784
+ "learning_rate": 2.8536641221374046e-05,
1785
+ "loss": 1.3042,
1786
+ "step": 22300
1787
+ },
1788
+ {
1789
+ "epoch": 32.23,
1790
+ "learning_rate": 2.8307633587786256e-05,
1791
+ "loss": 1.294,
1792
+ "step": 22400
1793
+ },
1794
+ {
1795
+ "epoch": 32.37,
1796
+ "learning_rate": 2.8078625954198472e-05,
1797
+ "loss": 1.2963,
1798
+ "step": 22500
1799
+ },
1800
+ {
1801
+ "epoch": 32.37,
1802
+ "eval_cer": 0.12080774681152574,
1803
+ "eval_loss": 0.2843906879425049,
1804
+ "eval_runtime": 41.7644,
1805
+ "eval_samples_per_second": 10.918,
1806
+ "eval_steps_per_second": 1.365,
1807
+ "eval_wer": 0.3705829054666264,
1808
+ "step": 22500
1809
+ },
1810
+ {
1811
+ "epoch": 32.52,
1812
+ "learning_rate": 2.7849618320610682e-05,
1813
+ "loss": 1.2769,
1814
+ "step": 22600
1815
+ },
1816
+ {
1817
+ "epoch": 32.66,
1818
+ "learning_rate": 2.76206106870229e-05,
1819
+ "loss": 1.2812,
1820
+ "step": 22700
1821
+ },
1822
+ {
1823
+ "epoch": 32.8,
1824
+ "learning_rate": 2.7391603053435113e-05,
1825
+ "loss": 1.2827,
1826
+ "step": 22800
1827
+ },
1828
+ {
1829
+ "epoch": 32.95,
1830
+ "learning_rate": 2.7162595419847326e-05,
1831
+ "loss": 1.2747,
1832
+ "step": 22900
1833
+ },
1834
+ {
1835
+ "epoch": 33.09,
1836
+ "learning_rate": 2.6935877862595417e-05,
1837
+ "loss": 1.2765,
1838
+ "step": 23000
1839
+ },
1840
+ {
1841
+ "epoch": 33.09,
1842
+ "eval_cer": 0.11726499763816722,
1843
+ "eval_loss": 0.28407707810401917,
1844
+ "eval_runtime": 40.9894,
1845
+ "eval_samples_per_second": 11.125,
1846
+ "eval_steps_per_second": 1.391,
1847
+ "eval_wer": 0.35668982180610087,
1848
+ "step": 23000
1849
+ },
1850
+ {
1851
+ "epoch": 33.24,
1852
+ "learning_rate": 2.670687022900763e-05,
1853
+ "loss": 1.2785,
1854
+ "step": 23100
1855
+ },
1856
+ {
1857
+ "epoch": 33.38,
1858
+ "learning_rate": 2.6477862595419844e-05,
1859
+ "loss": 1.2644,
1860
+ "step": 23200
1861
+ },
1862
+ {
1863
+ "epoch": 33.52,
1864
+ "learning_rate": 2.624885496183206e-05,
1865
+ "loss": 1.2724,
1866
+ "step": 23300
1867
+ },
1868
+ {
1869
+ "epoch": 33.67,
1870
+ "learning_rate": 2.601984732824427e-05,
1871
+ "loss": 1.2551,
1872
+ "step": 23400
1873
+ },
1874
+ {
1875
+ "epoch": 33.81,
1876
+ "learning_rate": 2.5790839694656488e-05,
1877
+ "loss": 1.2438,
1878
+ "step": 23500
1879
+ },
1880
+ {
1881
+ "epoch": 33.81,
1882
+ "eval_cer": 0.11372224846480869,
1883
+ "eval_loss": 0.2734295129776001,
1884
+ "eval_runtime": 41.7199,
1885
+ "eval_samples_per_second": 10.93,
1886
+ "eval_steps_per_second": 1.366,
1887
+ "eval_wer": 0.35517970401691334,
1888
+ "step": 23500
1889
+ },
1890
+ {
1891
+ "epoch": 33.96,
1892
+ "learning_rate": 2.5561832061068698e-05,
1893
+ "loss": 1.2491,
1894
+ "step": 23600
1895
+ },
1896
+ {
1897
+ "epoch": 34.1,
1898
+ "learning_rate": 2.5332824427480915e-05,
1899
+ "loss": 1.252,
1900
+ "step": 23700
1901
+ },
1902
+ {
1903
+ "epoch": 34.24,
1904
+ "learning_rate": 2.5103816793893128e-05,
1905
+ "loss": 1.2467,
1906
+ "step": 23800
1907
+ },
1908
+ {
1909
+ "epoch": 34.39,
1910
+ "learning_rate": 2.487480916030534e-05,
1911
+ "loss": 1.2406,
1912
+ "step": 23900
1913
+ },
1914
+ {
1915
+ "epoch": 34.53,
1916
+ "learning_rate": 2.4645801526717555e-05,
1917
+ "loss": 1.2487,
1918
+ "step": 24000
1919
+ },
1920
+ {
1921
+ "epoch": 34.53,
1922
+ "eval_cer": 0.11179341835931349,
1923
+ "eval_loss": 0.2702818512916565,
1924
+ "eval_runtime": 41.8515,
1925
+ "eval_samples_per_second": 10.896,
1926
+ "eval_steps_per_second": 1.362,
1927
+ "eval_wer": 0.3501963153125944,
1928
+ "step": 24000
1929
+ },
1930
+ {
1931
+ "epoch": 34.68,
1932
+ "learning_rate": 2.441679389312977e-05,
1933
+ "loss": 1.2504,
1934
+ "step": 24100
1935
+ },
1936
+ {
1937
+ "epoch": 34.82,
1938
+ "learning_rate": 2.4187786259541982e-05,
1939
+ "loss": 1.2341,
1940
+ "step": 24200
1941
+ },
1942
+ {
1943
+ "epoch": 34.96,
1944
+ "learning_rate": 2.39587786259542e-05,
1945
+ "loss": 1.2477,
1946
+ "step": 24300
1947
+ },
1948
+ {
1949
+ "epoch": 35.11,
1950
+ "learning_rate": 2.372977099236641e-05,
1951
+ "loss": 1.2427,
1952
+ "step": 24400
1953
+ },
1954
+ {
1955
+ "epoch": 35.25,
1956
+ "learning_rate": 2.3500763358778626e-05,
1957
+ "loss": 1.2249,
1958
+ "step": 24500
1959
+ },
1960
+ {
1961
+ "epoch": 35.25,
1962
+ "eval_cer": 0.11423397890096047,
1963
+ "eval_loss": 0.2650163471698761,
1964
+ "eval_runtime": 41.2103,
1965
+ "eval_samples_per_second": 11.065,
1966
+ "eval_steps_per_second": 1.383,
1967
+ "eval_wer": 0.3483841739655693,
1968
+ "step": 24500
1969
+ },
1970
+ {
1971
+ "epoch": 35.4,
1972
+ "learning_rate": 2.3271755725190836e-05,
1973
+ "loss": 1.2265,
1974
+ "step": 24600
1975
+ },
1976
+ {
1977
+ "epoch": 35.54,
1978
+ "learning_rate": 2.3042748091603052e-05,
1979
+ "loss": 1.2276,
1980
+ "step": 24700
1981
+ },
1982
+ {
1983
+ "epoch": 35.68,
1984
+ "learning_rate": 2.2816030534351143e-05,
1985
+ "loss": 1.2332,
1986
+ "step": 24800
1987
+ },
1988
+ {
1989
+ "epoch": 35.83,
1990
+ "learning_rate": 2.2587022900763357e-05,
1991
+ "loss": 1.2249,
1992
+ "step": 24900
1993
+ },
1994
+ {
1995
+ "epoch": 35.97,
1996
+ "learning_rate": 2.235801526717557e-05,
1997
+ "loss": 1.2229,
1998
+ "step": 25000
1999
+ },
2000
+ {
2001
+ "epoch": 35.97,
2002
+ "eval_cer": 0.10970713273500236,
2003
+ "eval_loss": 0.25843024253845215,
2004
+ "eval_runtime": 42.815,
2005
+ "eval_samples_per_second": 10.65,
2006
+ "eval_steps_per_second": 1.331,
2007
+ "eval_wer": 0.3373603141045001,
2008
+ "step": 25000
2009
+ },
2010
+ {
2011
+ "epoch": 36.11,
2012
+ "learning_rate": 2.2129007633587784e-05,
2013
+ "loss": 1.2412,
2014
+ "step": 25100
2015
+ },
2016
+ {
2017
+ "epoch": 36.26,
2018
+ "learning_rate": 2.1899999999999997e-05,
2019
+ "loss": 1.212,
2020
+ "step": 25200
2021
+ },
2022
+ {
2023
+ "epoch": 36.4,
2024
+ "learning_rate": 2.1670992366412214e-05,
2025
+ "loss": 1.2151,
2026
+ "step": 25300
2027
+ },
2028
+ {
2029
+ "epoch": 36.55,
2030
+ "learning_rate": 2.1441984732824424e-05,
2031
+ "loss": 1.2303,
2032
+ "step": 25400
2033
+ },
2034
+ {
2035
+ "epoch": 36.69,
2036
+ "learning_rate": 2.121297709923664e-05,
2037
+ "loss": 1.2374,
2038
+ "step": 25500
2039
+ },
2040
+ {
2041
+ "epoch": 36.69,
2042
+ "eval_cer": 0.10951031333648244,
2043
+ "eval_loss": 0.2568279504776001,
2044
+ "eval_runtime": 41.6839,
2045
+ "eval_samples_per_second": 10.939,
2046
+ "eval_steps_per_second": 1.367,
2047
+ "eval_wer": 0.33373603141045,
2048
+ "step": 25500
2049
+ },
2050
+ {
2051
+ "epoch": 36.83,
2052
+ "learning_rate": 2.098396946564885e-05,
2053
+ "loss": 1.2152,
2054
+ "step": 25600
2055
+ },
2056
+ {
2057
+ "epoch": 36.98,
2058
+ "learning_rate": 2.0754961832061068e-05,
2059
+ "loss": 1.2089,
2060
+ "step": 25700
2061
+ },
2062
+ {
2063
+ "epoch": 37.12,
2064
+ "learning_rate": 2.052595419847328e-05,
2065
+ "loss": 1.2201,
2066
+ "step": 25800
2067
+ },
2068
+ {
2069
+ "epoch": 37.27,
2070
+ "learning_rate": 2.0296946564885495e-05,
2071
+ "loss": 1.2006,
2072
+ "step": 25900
2073
+ },
2074
+ {
2075
+ "epoch": 37.41,
2076
+ "learning_rate": 2.0067938931297708e-05,
2077
+ "loss": 1.2153,
2078
+ "step": 26000
2079
+ },
2080
+ {
2081
+ "epoch": 37.41,
2082
+ "eval_cer": 0.10710911667453944,
2083
+ "eval_loss": 0.24941784143447876,
2084
+ "eval_runtime": 41.3494,
2085
+ "eval_samples_per_second": 11.028,
2086
+ "eval_steps_per_second": 1.378,
2087
+ "eval_wer": 0.33267894895801875,
2088
+ "step": 26000
2089
+ },
2090
+ {
2091
+ "epoch": 37.55,
2092
+ "learning_rate": 1.983893129770992e-05,
2093
+ "loss": 1.2071,
2094
+ "step": 26100
2095
+ },
2096
+ {
2097
+ "epoch": 37.7,
2098
+ "learning_rate": 1.9609923664122135e-05,
2099
+ "loss": 1.2042,
2100
+ "step": 26200
2101
+ },
2102
+ {
2103
+ "epoch": 37.84,
2104
+ "learning_rate": 1.9380916030534352e-05,
2105
+ "loss": 1.2037,
2106
+ "step": 26300
2107
+ },
2108
+ {
2109
+ "epoch": 37.98,
2110
+ "learning_rate": 1.9151908396946562e-05,
2111
+ "loss": 1.1962,
2112
+ "step": 26400
2113
+ },
2114
+ {
2115
+ "epoch": 38.13,
2116
+ "learning_rate": 1.892290076335878e-05,
2117
+ "loss": 1.1925,
2118
+ "step": 26500
2119
+ },
2120
+ {
2121
+ "epoch": 38.13,
2122
+ "eval_cer": 0.1076995748700992,
2123
+ "eval_loss": 0.2518324553966522,
2124
+ "eval_runtime": 40.748,
2125
+ "eval_samples_per_second": 11.191,
2126
+ "eval_steps_per_second": 1.399,
2127
+ "eval_wer": 0.33660525520990636,
2128
+ "step": 26500
2129
+ },
2130
+ {
2131
+ "epoch": 38.27,
2132
+ "learning_rate": 1.869389312977099e-05,
2133
+ "loss": 1.1969,
2134
+ "step": 26600
2135
+ },
2136
+ {
2137
+ "epoch": 38.42,
2138
+ "learning_rate": 1.8464885496183202e-05,
2139
+ "loss": 1.1947,
2140
+ "step": 26700
2141
+ },
2142
+ {
2143
+ "epoch": 38.56,
2144
+ "learning_rate": 1.823587786259542e-05,
2145
+ "loss": 1.2005,
2146
+ "step": 26800
2147
+ },
2148
+ {
2149
+ "epoch": 38.7,
2150
+ "learning_rate": 1.8006870229007632e-05,
2151
+ "loss": 1.1961,
2152
+ "step": 26900
2153
+ },
2154
+ {
2155
+ "epoch": 38.85,
2156
+ "learning_rate": 1.7777862595419846e-05,
2157
+ "loss": 1.1908,
2158
+ "step": 27000
2159
+ },
2160
+ {
2161
+ "epoch": 38.85,
2162
+ "eval_cer": 0.10565265312549205,
2163
+ "eval_loss": 0.24367305636405945,
2164
+ "eval_runtime": 41.2308,
2165
+ "eval_samples_per_second": 11.06,
2166
+ "eval_steps_per_second": 1.382,
2167
+ "eval_wer": 0.3272425249169435,
2168
+ "step": 27000
2169
+ },
2170
+ {
2171
+ "epoch": 38.99,
2172
+ "learning_rate": 1.754885496183206e-05,
2173
+ "loss": 1.1762,
2174
+ "step": 27100
2175
+ },
2176
+ {
2177
+ "epoch": 39.14,
2178
+ "learning_rate": 1.7319847328244273e-05,
2179
+ "loss": 1.2018,
2180
+ "step": 27200
2181
+ },
2182
+ {
2183
+ "epoch": 39.28,
2184
+ "learning_rate": 1.7090839694656486e-05,
2185
+ "loss": 1.1822,
2186
+ "step": 27300
2187
+ },
2188
+ {
2189
+ "epoch": 39.42,
2190
+ "learning_rate": 1.68618320610687e-05,
2191
+ "loss": 1.1745,
2192
+ "step": 27400
2193
+ },
2194
+ {
2195
+ "epoch": 39.57,
2196
+ "learning_rate": 1.6632824427480913e-05,
2197
+ "loss": 1.1858,
2198
+ "step": 27500
2199
+ },
2200
+ {
2201
+ "epoch": 39.57,
2202
+ "eval_cer": 0.10443237285466855,
2203
+ "eval_loss": 0.23960824310779572,
2204
+ "eval_runtime": 42.517,
2205
+ "eval_samples_per_second": 10.725,
2206
+ "eval_steps_per_second": 1.341,
2207
+ "eval_wer": 0.32648746602234974,
2208
+ "step": 27500
2209
+ },
2210
+ {
2211
+ "epoch": 39.71,
2212
+ "learning_rate": 1.6403816793893127e-05,
2213
+ "loss": 1.1866,
2214
+ "step": 27600
2215
+ },
2216
+ {
2217
+ "epoch": 39.86,
2218
+ "learning_rate": 1.617480916030534e-05,
2219
+ "loss": 1.1878,
2220
+ "step": 27700
2221
+ },
2222
+ {
2223
+ "epoch": 40.0,
2224
+ "learning_rate": 1.5945801526717557e-05,
2225
+ "loss": 1.1817,
2226
+ "step": 27800
2227
+ },
2228
+ {
2229
+ "epoch": 40.14,
2230
+ "learning_rate": 1.571679389312977e-05,
2231
+ "loss": 1.1851,
2232
+ "step": 27900
2233
+ },
2234
+ {
2235
+ "epoch": 40.29,
2236
+ "learning_rate": 1.5487786259541984e-05,
2237
+ "loss": 1.1808,
2238
+ "step": 28000
2239
+ },
2240
+ {
2241
+ "epoch": 40.29,
2242
+ "eval_cer": 0.10277908990710125,
2243
+ "eval_loss": 0.2373325228691101,
2244
+ "eval_runtime": 41.3513,
2245
+ "eval_samples_per_second": 11.027,
2246
+ "eval_steps_per_second": 1.378,
2247
+ "eval_wer": 0.31561461794019935,
2248
+ "step": 28000
2249
+ },
2250
+ {
2251
+ "epoch": 40.43,
2252
+ "learning_rate": 1.5258778625954197e-05,
2253
+ "loss": 1.1558,
2254
+ "step": 28100
2255
+ },
2256
+ {
2257
+ "epoch": 40.57,
2258
+ "learning_rate": 1.502977099236641e-05,
2259
+ "loss": 1.1804,
2260
+ "step": 28200
2261
+ },
2262
+ {
2263
+ "epoch": 40.72,
2264
+ "learning_rate": 1.4800763358778624e-05,
2265
+ "loss": 1.1736,
2266
+ "step": 28300
2267
+ },
2268
+ {
2269
+ "epoch": 40.86,
2270
+ "learning_rate": 1.4571755725190838e-05,
2271
+ "loss": 1.1782,
2272
+ "step": 28400
2273
+ },
2274
+ {
2275
+ "epoch": 41.01,
2276
+ "learning_rate": 1.4342748091603053e-05,
2277
+ "loss": 1.1842,
2278
+ "step": 28500
2279
+ },
2280
+ {
2281
+ "epoch": 41.01,
2282
+ "eval_cer": 0.10258227050858132,
2283
+ "eval_loss": 0.23562349379062653,
2284
+ "eval_runtime": 40.492,
2285
+ "eval_samples_per_second": 11.261,
2286
+ "eval_steps_per_second": 1.408,
2287
+ "eval_wer": 0.31516158260344307,
2288
+ "step": 28500
2289
+ },
2290
+ {
2291
+ "epoch": 41.15,
2292
+ "learning_rate": 1.4113740458015266e-05,
2293
+ "loss": 1.1595,
2294
+ "step": 28600
2295
+ },
2296
+ {
2297
+ "epoch": 41.29,
2298
+ "learning_rate": 1.388473282442748e-05,
2299
+ "loss": 1.1527,
2300
+ "step": 28700
2301
+ },
2302
+ {
2303
+ "epoch": 41.44,
2304
+ "learning_rate": 1.3655725190839693e-05,
2305
+ "loss": 1.1517,
2306
+ "step": 28800
2307
+ },
2308
+ {
2309
+ "epoch": 41.58,
2310
+ "learning_rate": 1.3426717557251907e-05,
2311
+ "loss": 1.1609,
2312
+ "step": 28900
2313
+ },
2314
+ {
2315
+ "epoch": 41.73,
2316
+ "learning_rate": 1.3197709923664122e-05,
2317
+ "loss": 1.1668,
2318
+ "step": 29000
2319
+ },
2320
+ {
2321
+ "epoch": 41.73,
2322
+ "eval_cer": 0.10246417886946937,
2323
+ "eval_loss": 0.23187227547168732,
2324
+ "eval_runtime": 40.5813,
2325
+ "eval_samples_per_second": 11.237,
2326
+ "eval_steps_per_second": 1.405,
2327
+ "eval_wer": 0.3187858652974932,
2328
+ "step": 29000
2329
+ },
2330
+ {
2331
+ "epoch": 41.87,
2332
+ "learning_rate": 1.2968702290076335e-05,
2333
+ "loss": 1.1536,
2334
+ "step": 29100
2335
+ },
2336
+ {
2337
+ "epoch": 42.01,
2338
+ "learning_rate": 1.2739694656488549e-05,
2339
+ "loss": 1.1649,
2340
+ "step": 29200
2341
+ },
2342
+ {
2343
+ "epoch": 42.16,
2344
+ "learning_rate": 1.2510687022900762e-05,
2345
+ "loss": 1.1459,
2346
+ "step": 29300
2347
+ },
2348
+ {
2349
+ "epoch": 42.3,
2350
+ "learning_rate": 1.2281679389312975e-05,
2351
+ "loss": 1.1495,
2352
+ "step": 29400
2353
+ },
2354
+ {
2355
+ "epoch": 42.45,
2356
+ "learning_rate": 1.205267175572519e-05,
2357
+ "loss": 1.1448,
2358
+ "step": 29500
2359
+ },
2360
+ {
2361
+ "epoch": 42.45,
2362
+ "eval_cer": 0.09947252401196661,
2363
+ "eval_loss": 0.2292834371328354,
2364
+ "eval_runtime": 41.732,
2365
+ "eval_samples_per_second": 10.927,
2366
+ "eval_steps_per_second": 1.366,
2367
+ "eval_wer": 0.3098761703412866,
2368
+ "step": 29500
2369
+ },
2370
+ {
2371
+ "epoch": 42.59,
2372
+ "learning_rate": 1.1823664122137404e-05,
2373
+ "loss": 1.1408,
2374
+ "step": 29600
2375
+ },
2376
+ {
2377
+ "epoch": 42.73,
2378
+ "learning_rate": 1.1594656488549618e-05,
2379
+ "loss": 1.1458,
2380
+ "step": 29700
2381
+ },
2382
+ {
2383
+ "epoch": 42.88,
2384
+ "learning_rate": 1.1365648854961831e-05,
2385
+ "loss": 1.1358,
2386
+ "step": 29800
2387
+ },
2388
+ {
2389
+ "epoch": 43.02,
2390
+ "learning_rate": 1.1136641221374044e-05,
2391
+ "loss": 1.1519,
2392
+ "step": 29900
2393
+ },
2394
+ {
2395
+ "epoch": 43.17,
2396
+ "learning_rate": 1.0909923664122137e-05,
2397
+ "loss": 1.1327,
2398
+ "step": 30000
2399
+ },
2400
+ {
2401
+ "epoch": 43.17,
2402
+ "eval_cer": 0.09793733270351125,
2403
+ "eval_loss": 0.2265164852142334,
2404
+ "eval_runtime": 40.9338,
2405
+ "eval_samples_per_second": 11.14,
2406
+ "eval_steps_per_second": 1.392,
2407
+ "eval_wer": 0.3047417698580489,
2408
+ "step": 30000
2409
+ },
2410
+ {
2411
+ "epoch": 43.31,
2412
+ "learning_rate": 1.068091603053435e-05,
2413
+ "loss": 1.1322,
2414
+ "step": 30100
2415
+ },
2416
+ {
2417
+ "epoch": 43.45,
2418
+ "learning_rate": 1.0451908396946564e-05,
2419
+ "loss": 1.1392,
2420
+ "step": 30200
2421
+ },
2422
+ {
2423
+ "epoch": 43.6,
2424
+ "learning_rate": 1.0222900763358777e-05,
2425
+ "loss": 1.1318,
2426
+ "step": 30300
2427
+ },
2428
+ {
2429
+ "epoch": 43.74,
2430
+ "learning_rate": 9.99389312977099e-06,
2431
+ "loss": 1.1321,
2432
+ "step": 30400
2433
+ },
2434
+ {
2435
+ "epoch": 43.88,
2436
+ "learning_rate": 9.764885496183206e-06,
2437
+ "loss": 1.1307,
2438
+ "step": 30500
2439
+ },
2440
+ {
2441
+ "epoch": 43.88,
2442
+ "eval_cer": 0.09888206581640686,
2443
+ "eval_loss": 0.22221311926841736,
2444
+ "eval_runtime": 40.9097,
2445
+ "eval_samples_per_second": 11.147,
2446
+ "eval_steps_per_second": 1.393,
2447
+ "eval_wer": 0.30776200543642407,
2448
+ "step": 30500
2449
+ },
2450
+ {
2451
+ "epoch": 44.03,
2452
+ "learning_rate": 9.53587786259542e-06,
2453
+ "loss": 1.1358,
2454
+ "step": 30600
2455
+ },
2456
+ {
2457
+ "epoch": 44.17,
2458
+ "learning_rate": 9.306870229007633e-06,
2459
+ "loss": 1.1342,
2460
+ "step": 30700
2461
+ },
2462
+ {
2463
+ "epoch": 44.32,
2464
+ "learning_rate": 9.077862595419846e-06,
2465
+ "loss": 1.1348,
2466
+ "step": 30800
2467
+ },
2468
+ {
2469
+ "epoch": 44.46,
2470
+ "learning_rate": 8.84885496183206e-06,
2471
+ "loss": 1.1294,
2472
+ "step": 30900
2473
+ },
2474
+ {
2475
+ "epoch": 44.6,
2476
+ "learning_rate": 8.619847328244275e-06,
2477
+ "loss": 1.1419,
2478
+ "step": 31000
2479
+ },
2480
+ {
2481
+ "epoch": 44.6,
2482
+ "eval_cer": 0.09813415210203118,
2483
+ "eval_loss": 0.22149430215358734,
2484
+ "eval_runtime": 40.8027,
2485
+ "eval_samples_per_second": 11.176,
2486
+ "eval_steps_per_second": 1.397,
2487
+ "eval_wer": 0.3038356991845364,
2488
+ "step": 31000
2489
+ },
2490
+ {
2491
+ "epoch": 44.75,
2492
+ "learning_rate": 8.390839694656488e-06,
2493
+ "loss": 1.1191,
2494
+ "step": 31100
2495
+ },
2496
+ {
2497
+ "epoch": 44.89,
2498
+ "learning_rate": 8.161832061068702e-06,
2499
+ "loss": 1.1223,
2500
+ "step": 31200
2501
+ },
2502
+ {
2503
+ "epoch": 45.04,
2504
+ "learning_rate": 7.932824427480915e-06,
2505
+ "loss": 1.1393,
2506
+ "step": 31300
2507
+ },
2508
+ {
2509
+ "epoch": 45.18,
2510
+ "learning_rate": 7.703816793893129e-06,
2511
+ "loss": 1.1172,
2512
+ "step": 31400
2513
+ },
2514
+ {
2515
+ "epoch": 45.32,
2516
+ "learning_rate": 7.474809160305343e-06,
2517
+ "loss": 1.1231,
2518
+ "step": 31500
2519
+ },
2520
+ {
2521
+ "epoch": 45.32,
2522
+ "eval_cer": 0.09722878286883956,
2523
+ "eval_loss": 0.2193477302789688,
2524
+ "eval_runtime": 40.6396,
2525
+ "eval_samples_per_second": 11.221,
2526
+ "eval_steps_per_second": 1.403,
2527
+ "eval_wer": 0.3012684989429176,
2528
+ "step": 31500
2529
+ },
2530
+ {
2531
+ "epoch": 45.47,
2532
+ "learning_rate": 7.245801526717557e-06,
2533
+ "loss": 1.1289,
2534
+ "step": 31600
2535
+ },
2536
+ {
2537
+ "epoch": 45.61,
2538
+ "learning_rate": 7.016793893129771e-06,
2539
+ "loss": 1.1083,
2540
+ "step": 31700
2541
+ },
2542
+ {
2543
+ "epoch": 45.75,
2544
+ "learning_rate": 6.787786259541984e-06,
2545
+ "loss": 1.109,
2546
+ "step": 31800
2547
+ },
2548
+ {
2549
+ "epoch": 45.9,
2550
+ "learning_rate": 6.558778625954198e-06,
2551
+ "loss": 1.1218,
2552
+ "step": 31900
2553
+ },
2554
+ {
2555
+ "epoch": 46.04,
2556
+ "learning_rate": 6.329770992366412e-06,
2557
+ "loss": 1.139,
2558
+ "step": 32000
2559
+ },
2560
+ {
2561
+ "epoch": 46.04,
2562
+ "eval_cer": 0.09683514407179972,
2563
+ "eval_loss": 0.2162453532218933,
2564
+ "eval_runtime": 41.1951,
2565
+ "eval_samples_per_second": 11.069,
2566
+ "eval_steps_per_second": 1.384,
2567
+ "eval_wer": 0.30066445182724255,
2568
+ "step": 32000
2569
+ },
2570
+ {
2571
+ "epoch": 46.19,
2572
+ "learning_rate": 6.100763358778626e-06,
2573
+ "loss": 1.1155,
2574
+ "step": 32100
2575
+ },
2576
+ {
2577
+ "epoch": 46.33,
2578
+ "learning_rate": 5.8717557251908395e-06,
2579
+ "loss": 1.1212,
2580
+ "step": 32200
2581
+ },
2582
+ {
2583
+ "epoch": 46.47,
2584
+ "learning_rate": 5.642748091603053e-06,
2585
+ "loss": 1.1149,
2586
+ "step": 32300
2587
+ },
2588
+ {
2589
+ "epoch": 46.62,
2590
+ "learning_rate": 5.413740458015267e-06,
2591
+ "loss": 1.1183,
2592
+ "step": 32400
2593
+ },
2594
+ {
2595
+ "epoch": 46.76,
2596
+ "learning_rate": 5.184732824427481e-06,
2597
+ "loss": 1.1114,
2598
+ "step": 32500
2599
+ },
2600
+ {
2601
+ "epoch": 46.76,
2602
+ "eval_cer": 0.09596913871831207,
2603
+ "eval_loss": 0.2121613770723343,
2604
+ "eval_runtime": 40.6982,
2605
+ "eval_samples_per_second": 11.204,
2606
+ "eval_steps_per_second": 1.401,
2607
+ "eval_wer": 0.2982482633645424,
2608
+ "step": 32500
2609
+ },
2610
+ {
2611
+ "epoch": 46.91,
2612
+ "learning_rate": 4.955725190839695e-06,
2613
+ "loss": 1.1091,
2614
+ "step": 32600
2615
+ },
2616
+ {
2617
+ "epoch": 47.05,
2618
+ "learning_rate": 4.726717557251908e-06,
2619
+ "loss": 1.1148,
2620
+ "step": 32700
2621
+ },
2622
+ {
2623
+ "epoch": 47.19,
2624
+ "learning_rate": 4.497709923664122e-06,
2625
+ "loss": 1.0962,
2626
+ "step": 32800
2627
+ },
2628
+ {
2629
+ "epoch": 47.34,
2630
+ "learning_rate": 4.268702290076335e-06,
2631
+ "loss": 1.0984,
2632
+ "step": 32900
2633
+ },
2634
+ {
2635
+ "epoch": 47.48,
2636
+ "learning_rate": 4.03969465648855e-06,
2637
+ "loss": 1.111,
2638
+ "step": 33000
2639
+ },
2640
+ {
2641
+ "epoch": 47.48,
2642
+ "eval_cer": 0.09482758620689655,
2643
+ "eval_loss": 0.21248506009578705,
2644
+ "eval_runtime": 40.6368,
2645
+ "eval_samples_per_second": 11.221,
2646
+ "eval_steps_per_second": 1.403,
2647
+ "eval_wer": 0.2946239806704923,
2648
+ "step": 33000
2649
+ },
2650
+ {
2651
+ "epoch": 47.63,
2652
+ "learning_rate": 3.810687022900763e-06,
2653
+ "loss": 1.1031,
2654
+ "step": 33100
2655
+ },
2656
+ {
2657
+ "epoch": 47.77,
2658
+ "learning_rate": 3.581679389312977e-06,
2659
+ "loss": 1.1159,
2660
+ "step": 33200
2661
+ },
2662
+ {
2663
+ "epoch": 47.91,
2664
+ "learning_rate": 3.352671755725191e-06,
2665
+ "loss": 1.0905,
2666
+ "step": 33300
2667
+ },
2668
+ {
2669
+ "epoch": 48.06,
2670
+ "learning_rate": 3.1236641221374048e-06,
2671
+ "loss": 1.1087,
2672
+ "step": 33400
2673
+ },
2674
+ {
2675
+ "epoch": 48.2,
2676
+ "learning_rate": 2.894656488549618e-06,
2677
+ "loss": 1.0982,
2678
+ "step": 33500
2679
+ },
2680
+ {
2681
+ "epoch": 48.2,
2682
+ "eval_cer": 0.09533931664304834,
2683
+ "eval_loss": 0.2098563313484192,
2684
+ "eval_runtime": 40.5946,
2685
+ "eval_samples_per_second": 11.233,
2686
+ "eval_steps_per_second": 1.404,
2687
+ "eval_wer": 0.2956810631229236,
2688
+ "step": 33500
2689
+ },
2690
+ {
2691
+ "epoch": 48.34,
2692
+ "learning_rate": 2.66793893129771e-06,
2693
+ "loss": 1.0947,
2694
+ "step": 33600
2695
+ },
2696
+ {
2697
+ "epoch": 48.49,
2698
+ "learning_rate": 2.4389312977099237e-06,
2699
+ "loss": 1.1102,
2700
+ "step": 33700
2701
+ },
2702
+ {
2703
+ "epoch": 48.63,
2704
+ "learning_rate": 2.209923664122137e-06,
2705
+ "loss": 1.0891,
2706
+ "step": 33800
2707
+ },
2708
+ {
2709
+ "epoch": 48.78,
2710
+ "learning_rate": 1.980916030534351e-06,
2711
+ "loss": 1.0937,
2712
+ "step": 33900
2713
+ },
2714
+ {
2715
+ "epoch": 48.92,
2716
+ "learning_rate": 1.7519083969465647e-06,
2717
+ "loss": 1.109,
2718
+ "step": 34000
2719
+ },
2720
+ {
2721
+ "epoch": 48.92,
2722
+ "eval_cer": 0.09545740828216029,
2723
+ "eval_loss": 0.20918497443199158,
2724
+ "eval_runtime": 40.877,
2725
+ "eval_samples_per_second": 11.155,
2726
+ "eval_steps_per_second": 1.394,
2727
+ "eval_wer": 0.29553005134400484,
2728
+ "step": 34000
2729
+ },
2730
+ {
2731
+ "epoch": 49.06,
2732
+ "learning_rate": 1.5229007633587786e-06,
2733
+ "loss": 1.097,
2734
+ "step": 34100
2735
+ },
2736
+ {
2737
+ "epoch": 49.21,
2738
+ "learning_rate": 1.2938931297709922e-06,
2739
+ "loss": 1.0909,
2740
+ "step": 34200
2741
+ },
2742
+ {
2743
+ "epoch": 49.35,
2744
+ "learning_rate": 1.0648854961832059e-06,
2745
+ "loss": 1.1008,
2746
+ "step": 34300
2747
+ },
2748
+ {
2749
+ "epoch": 49.5,
2750
+ "learning_rate": 8.358778625954198e-07,
2751
+ "loss": 1.0904,
2752
+ "step": 34400
2753
+ },
2754
+ {
2755
+ "epoch": 49.64,
2756
+ "learning_rate": 6.068702290076335e-07,
2757
+ "loss": 1.0905,
2758
+ "step": 34500
2759
+ },
2760
+ {
2761
+ "epoch": 49.64,
2762
+ "eval_cer": 0.09526058888364038,
2763
+ "eval_loss": 0.20883652567863464,
2764
+ "eval_runtime": 40.602,
2765
+ "eval_samples_per_second": 11.231,
2766
+ "eval_steps_per_second": 1.404,
2767
+ "eval_wer": 0.2953790395650861,
2768
+ "step": 34500
2769
+ },
2770
+ {
2771
+ "epoch": 49.78,
2772
+ "learning_rate": 3.778625954198473e-07,
2773
+ "loss": 1.0961,
2774
+ "step": 34600
2775
+ },
2776
+ {
2777
+ "epoch": 49.93,
2778
+ "learning_rate": 1.4885496183206107e-07,
2779
+ "loss": 1.095,
2780
+ "step": 34700
2781
+ },
2782
+ {
2783
+ "epoch": 50.0,
2784
+ "step": 34750,
2785
+ "total_flos": 2.8392187465644065e+20,
2786
+ "train_loss": 2.2316733406121783,
2787
+ "train_runtime": 114311.9751,
2788
+ "train_samples_per_second": 9.737,
2789
+ "train_steps_per_second": 0.304
2790
+ }
2791
+ ],
2792
+ "max_steps": 34750,
2793
+ "num_train_epochs": 50,
2794
+ "total_flos": 2.8392187465644065e+20,
2795
+ "trial_name": null,
2796
+ "trial_params": null
2797
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4af57085f0712099c06c191a8e3123d5fbba4119a615b1c3ec5ef78e066139b2
3
+ size 2991
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"๊ฐ€": 1, "๊ฐ": 2, "๊ฐ„": 3, "๊ฐˆ": 4, "๊ฐ": 5, "๊ฐ‘": 6, "๊ฐ’": 7, "๊ฐ“": 8, "๊ฐ”": 9, "๊ฐ•": 10, "๊ฐ–": 11, "๊ฐ™": 12, "๊ฐš": 13, "๊ฐœ": 14, "๊ฐ": 15, "๊ฐ ": 16, "๊ฐค": 17, "๊ฐฏ": 18, "๊ฐฑ": 19, "๊ฑฐ": 20, "๊ฑฑ": 21, "๊ฑด": 22, "๊ฑท": 23, "๊ฑธ": 24, "๊ฒ€": 25, "๊ฒ": 26, "๊ฒƒ": 27, "๊ฒ‰": 28, "๊ฒŒ": 29, "๊ฒ": 30, "๊ฒŸ": 31, "๊ฒ ": 32, "๊ฒจ": 33, "๊ฒฉ": 34, "๊ฒช": 35, "๊ฒฌ": 36, "๊ฒฐ": 37, "๊ฒธ": 38, "๊ฒน": 39, "๊ฒผ": 40, "๊ฒฝ": 41, "๊ณ": 42, "๊ณ„": 43, "๊ณ ": 44, "๊ณก": 45, "๊ณค": 46, "๊ณง": 47, "๊ณจ": 48, "๊ณฐ": 49, "๊ณฑ": 50, "๊ณณ": 51, "๊ณต": 52, "๊ณถ": 53, "๊ณผ": 54, "๊ณฝ": 55, "๊ด€": 56, "๊ด„": 57, "๊ดŒ": 58, "๊ด‘": 59, "๊ด˜": 60, "๊ดญ": 61, "๊ดด": 62, "๊ต‰": 63, "๊ต": 64, "๊ตฌ": 65, "๊ตญ": 66, "๊ตฐ": 67, "๊ตณ": 68, "๊ตด": 69, "๊ตต": 70, "๊ตถ": 71, "๊ตฝ": 72, "๊ตฟ": 73, "๊ถ": 74, "๊ถˆ": 75, "๊ถŒ": 76, "๊ถ": 77, "๊ถค": 78, "๊ท€": 79, "๊ทœ": 80, "๊ท ": 81, "๊ทธ": 82, "๊ทน": 83, "๊ทผ": 84, "๊ธ€": 85, "๊ธˆ": 86, "๊ธ‰": 87, "๊ธ‹": 88, "๊ธ": 89, "๊ธฐ": 90, "๊ธด": 91, "๊ธธ": 92, "๊น€": 93, "๊น": 94, "๊นƒ": 95, "๊นŠ": 96, "๊นŒ": 97, "๊นŽ": 98, "๊น”": 99, "๊น": 100, "๊นก": 101, "๊นฅ": 102, "๊นจ": 103, "๊นฌ": 104, "๊บผ": 105, "๊ป": 106, "๊ป": 107, "๊ป‘": 108, "๊ป˜": 109, "๊ปด": 110, "๊ผˆ": 111, "๊ผฌ": 112, "๊ผญ": 113, "๊ผด": 114, "๊ผผ": 115, "๊ผฝ": 116, "๊ฝ": 117, "๊ฝ‚": 118, "๊ฝƒ": 119, "๊ฝ": 120, "๊ฝฅ": 121, "๊พธ": 122, "๊พผ": 123, "๊ฟ€": 124, "๊ฟ‡": 125, "๊ฟˆ": 126, "๊ฟŽ": 127, "๊ฟ”": 128, "๊ฟจ": 129, "๊ฟฐ": 130, "๋€Œ": 131, "๋€": 132, "๋„": 133, "๋…": 134, "๋ˆ": 135, "๋Š": 136, "๋Œ": 137, "๋“": 138, "๋”": 139, "๋—": 140, "๋": 141, "๋ผ": 142, "๋ฝ": 143, "๋‚€": 144, "๋‚Œ": 145, "๋‚˜": 146, "๋‚™": 147, "๋‚œ": 148, "๋‚ ": 149, "๋‚ก": 150, "๋‚จ": 151, "๋‚ฉ": 152, "๋‚ซ": 153, "๋‚ฌ": 154, "๋‚ญ": 155, "๋‚ฎ": 156, "๋‚ฏ": 157, "๋‚ณ": 158, "๋‚ด": 159, "๋‚ธ": 160, "๋‚ผ": 161, "๋ƒ„": 162, "๋ƒ…": 163, "๋ƒ‡": 164, "๋ƒˆ": 165, "๋ƒ‰": 166, "๋ƒ": 167, "๋ƒฅ": 168, "๋„ˆ": 169, "๋„‰": 170, "๋„Œ": 171, "๋„": 172, "๋„“": 173, "๋„˜": 174, "๋„›": 175, "๋„ฃ": 176, "๋„ค": 177, "๋„ฅ": 178, "๋„จ": 179, "๋„ท": 180, "๋…€": 181, "๋…": 182, "๋…„": 183, "๋…": 184, "๋…”": 185, "๋…•": 186, "๋…˜": 187, "๋…ธ": 188, "๋…น": 189, "๋…ผ": 190, "๋†€": 191, "๋†ˆ": 192, "๋†": 193, "๋†’": 194, "๋†“": 195, "๋†จ": 196, "๋‡Œ": 197, "๋‡จ": 198, "๋‡ฝ": 199, "๋ˆ„": 200, "๋ˆˆ": 201, "๋ˆŒ": 202, "๋ˆ ": 203, "๋‰œ": 204, "๋‰ด": 205, "๋Š‰": 206, "๋Š": 207, "๋Š”": 208, "๋Š˜": 209, "๋Š ": 210, "๋Šฅ": 211, "๋Šฆ": 212, "๋Šช": 213, "๋Šฌ": 214, "๋‹ˆ": 215, "๋‹‰": 216, "๋‹Œ": 217, "๋‹": 218, "๋‹˜": 219, "๋‹™": 220, "๋‹›": 221, "๋‹": 222, "๋‹ค": 223, "๋‹ฅ": 224, "๋‹ฆ": 225, "๋‹จ": 226, "๋‹ซ": 227, "๋‹ฌ": 228, "๋‹ญ": 229, "๋‹ฎ": 230, "๋‹ณ": 231, "๋‹ด": 232, "๋‹ต": 233, "๋‹ท": 234, "๋‹น": 235, "๋‹ฟ": 236, "๋Œ€": 237, "๋Œ": 238, "๋Œ": 239, "๋Œ“": 240, "๋”": 241, "๋•": 242, "๋˜": 243, "๋œ": 244, "๋Ÿ": 245, "๋ค": 246, "๋ง": 247, "๋ฉ": 248, "๋ซ": 249, "๋ฎ": 250, "๋ฐ": 251, "๋ด": 252, "๋ธ": 253, "๋Ž…": 254, "๋ŽŒ": 255, "๋„": 256, "๋…": 257, "๋ˆ": 258, "๋‹": 259, "๋Œ": 260, "๋”": 261, "๋•": 262, "๋—": 263, "๋™": 264, "๋›": 265, "๋ผ": 266, "๋": 267, "๋˜": 268, "๋œ": 269, "๋ ": 270, "๋จ": 271, "๋ฉ": 272, "๋‘": 273, "๋‘‘": 274, "๋‘”": 275, "๋‘˜": 276, "๋‘ ": 277, "๋‘ฅ": 278, "๋‘ฌ": 279, "๋’€": 280, "๋’ค": 281, "๋’ท": 282, "๋“€": 283, "๋“œ": 284, "๋“": 285, "๋“ ": 286, "๋“ฃ": 287, "๋“ค": 288, "๋“ฌ": 289, "๋“ญ": 290, "๋“ฏ": 291, "๋“ฑ": 292, "๋””": 293, "๋”˜": 294, "๋”œ": 295, "๋”ฅ": 296, "๋”จ": 297, "๋”ฉ": 298, "๋”ช": 299, "๋”ฐ": 300, "๋”ฑ": 301, "๋”ด": 302, "๋”ธ": 303, "๋•€": 304, "๋•„": 305, "๋•…": 306, "๋•Œ": 307, "๋•": 308, "๋• ": 309, "๋•ก": 310, "๋– ": 311, "๋–ก": 312, "๋–ค": 313, "๋–จ": 314, "๋–ด": 315, "๋–ป": 316, "๋–ผ": 317, "๋—„": 318, "๋˜": 319, "๋˜‘": 320, "๋˜ฅ": 321, "๋šœ": 322, "๋š": 323, "๋šซ": 324, "๋›ฐ": 325, "๋›ด": 326, "๋œจ": 327, "๋œฏ": 328, "๋œธ": 329, "๋œป": 330, "๋„": 331, "๋”": 332, "๋ ": 333, "๋ค": 334, "๋จ": 335, "๋ต": 336, "๋ผ": 337, "๋ฝ": 338, "๋ž€": 339, "๋ž„": 340, "๋žŒ": 341, "๋ž": 342, "๋ž": 343, "๋ž‘": 344, "๋ž˜": 345, "๋ž™": 346, "๋žœ": 347, "๋žจ": 348, "๋žซ": 349, "๋žฌ": 350, "๋žญ": 351, "๋žด": 352, "๋žต": 353, "๋Ÿ‰": 354, "๋Ÿฌ": 355, "๋Ÿญ": 356, "๋Ÿฐ": 357, "๋Ÿด": 358, "๋Ÿผ": 359, "๋Ÿฝ": 360, "๋ €": 361, "๋ ": 362, "๋ ‡": 363, "๋ ˆ": 364, "๋ ‰": 365, "๋ Œ": 366, "๋ ˜": 367, "๋ ›": 368, "๋ ค": 369, "๋ ฅ": 370, "๋ จ": 371, "๋ ฌ": 372, "๋ ด": 373, "๋ ต": 374, "๋ ท": 375, "๋ ธ": 376, "๋ น": 377, "๋ก€": 378, "๋กœ": 379, "๋ก": 380, "๋ก ": 381, "๋กค": 382, "๋กฌ": 383, "๋กญ": 384, "๋กฏ": 385, "๋กฑ": 386, "๋ขฐ": 387, "๋ฃŒ": 388, "๋ฃก": 389, "๋ฃจ": 390, "๋ฃฌ": 391, "๋ฃฐ": 392, "๋ฃธ": 393, "๋ฃน": 394, "๋ค„": 395, "๋ค˜": 396, "๋คผ": 397, "๋ฅ˜": 398, "๋ฅ™": 399, "๋ฅœ": 400, "๋ฅ ": 401, "๋ฅญ": 402, "๋ฅด": 403, "๋ฅต": 404, "๋ฅธ": 405, "๋ฅผ": 406, "๋ฆ„": 407, "๋ฆ…": 408, "๋ฆ‡": 409, "๋ฆ‰": 410, "๋ฆŽ": 411, "๋ฆฌ": 412, "๋ฆญ": 413, "๋ฆฐ": 414, "๋ฆด": 415, "๋ฆผ": 416, "๋ฆฝ": 417, "๋ฆฟ": 418, "๋ง": 419, "๋งˆ": 420, "๋ง‰": 421, "๋งŒ": 422, "๋งŽ": 423, "๋ง": 424, "๋ง": 425, "๋ง‘": 426, "๋ง˜": 427, "๋ง™": 428, "๋ง›": 429, "๋ง": 430, "๋งž": 431, "๋งก": 432, "๋งค": 433, "๋งฅ": 434, "๋งจ": 435, "๋งน": 436, "๋งบ": 437, "๋จธ": 438, "๋จน": 439, "๋จผ": 440, "๋ฉ€": 441, "๋ฉˆ": 442, "๋ฉ‹": 443, "๋ฉ": 444, "๋ฉ”": 445, "๋ฉ•": 446, "๋ฉ˜": 447, "๋ฉœ": 448, "๋ฉง": 449, "๋ฉฐ": 450, "๋ฉด": 451, "๋ฉธ": 452, "๋ช…": 453, "๋ช‡": 454, "๋ชจ": 455, "๋ชฉ": 456, "๋ชซ": 457, "๋ชฌ": 458, "๋ชฐ": 459, "๋ชธ": 460, "๋ชป": 461, "๋ชฝ": 462, "๋ฌ˜": 463, "๋ฌด": 464, "๋ฌต": 465, "๋ฌถ": 466, "๋ฌธ": 467, "๋ฌป": 468, "๋ฌผ": 469, "๋ญ„": 470, "๋ญ‡": 471, "๋ญ": 472, "๋ญ”": 473, "๋ญ˜": 474, "๋ฎค": 475, "๋ฎฌ": 476, "๋ฏ€": 477, "๋ฏˆ": 478, "๋ฏธ": 479, "๋ฏน": 480, "๋ฏผ": 481, "๋ฏฟ": 482, "๋ฐ€": 483, "๋ฐ‹": 484, "๋ฐŒ": 485, "๋ฐ": 486, "๋ฐ": 487, "๋ฐ‘": 488, "๋ฐ”": 489, "๋ฐ•": 490, "๋ฐ–": 491, "๋ฐ˜": 492, "๋ฐ›": 493, "๋ฐœ": 494, "๋ฐ": 495, "๋ฐค": 496, "๋ฐฅ": 497, "๋ฐฉ": 498, "๋ฐญ": 499, "๋ฐฐ": 500, "๋ฐฑ": 501, "๋ฐด": 502, "๋ฑ€": 503, "๋ฑƒ": 504, "๋ฑ…": 505, "๋ฒ„": 506, "๋ฒ…": 507, "๋ฒˆ": 508, "๋ฒŒ": 509, "๋ฒ”": 510, "๋ฒ•": 511, "๋ฒ—": 512, "๋ฒš": 513, "๋ฒ ": 514, "๋ฒค": 515, "๋ฒจ": 516, "๋ฒณ": 517, "๋ฒผ": 518, "๋ฒฝ": 519, "๋ณ€": 520, "๋ณ„": 521, "๋ณ": 522, "๋ณ": 523, "๋ณ‘": 524, "๋ณ•": 525, "๋ณด": 526, "๋ณต": 527, "๋ณถ": 528, "๋ณธ": 529, "๋ณผ": 530, "๋ด„": 531, "๋ด…": 532, "๋ด‡": 533, "๋ด‰": 534, "๋ด": 535, "๋ดค": 536, "๋ตˆ": 537, "๋ต™": 538, "๋ถ€": 539, "๋ถ": 540, "๋ถ„": 541, "๋ถˆ": 542, "๋ถ‰": 543, "๋ถ": 544, "๋ถ“": 545, "๋ถ•": 546, "๋ถ™": 547, "๋ท”": 548, "๋ทฐ": 549, "๋ธŒ": 550, "๋ธ": 551, "๋ธ”": 552, "๋น„": 553, "๋น…": 554, "๋นˆ": 555, "๋นŒ": 556, "๋น—": 557, "๋น™": 558, "๋นš": 559, "๋น›": 560, "๋น ": 561, "๋นจ": 562, "๋นต": 563, "๋นผ": 564, "๋บ€": 565, "๋บŒ": 566, "๋บ": 567, "๋บ‘": 568, "๋ป": 569, "๋ป‘": 570, "๋ป”": 571, "๋ป—": 572, "๋ป˜": 573, "๋ผˆ": 574, "๋ฝ€": 575, "๋ฝ‘": 576, "๋ฝ•": 577, "๋ฟŒ": 578, "๋ฟ": 579, "๋ฟœ": 580, "์˜": 581, "์œ": 582, "์ฉ": 583, "์‚": 584, "์‚ฌ": 585, "์‚ญ": 586, "์‚ฐ": 587, "์‚ด": 588, "์‚ถ": 589, "์‚ผ": 590, "์‚ฝ": 591, "์‚ฟ": 592, "์ƒ€": 593, "์ƒ": 594, "์ƒˆ": 595, "์ƒ‰": 596, "์ƒŒ": 597, "์ƒ": 598, "์ƒ˜": 599, "์ƒ": 600, "์ƒค": 601, "์ƒฌ": 602, "์ƒต": 603, "์ƒท": 604, "์„œ": 605, "์„": 606, "์„ž": 607, "์„ ": 608, "์„ฃ": 609, "์„ค": 610, "์„ฌ": 611, "์„ญ": 612, "์„ฏ": 613, "์„ฐ": 614, "์„ฑ": 615, "์„ธ": 616, "์„น": 617, "์„ผ": 618, "์…€": 619, "์…ˆ": 620, "์…‰": 621, "์…‹": 622, "์…”": 623, "์…˜": 624, "์…œ": 625, "์…จ": 626, "์…ฐ": 627, "์†Œ": 628, "์†": 629, "์†": 630, "์†”": 631, "์†œ": 632, "์†Ÿ": 633, "์†ก": 634, "์†ฅ": 635, "์‡„": 636, "์‡ ": 637, "์‡ค": 638, "์‡ผ": 639, "์ˆ": 640, "์ˆ˜": 641, "์ˆ™": 642, "์ˆœ": 643, "์ˆ ": 644, "์ˆจ": 645, "์ˆญ": 646, "์ˆฒ": 647, "์‰ฌ": 648, "์‰ฐ": 649, "์‰ผ": 650, "์‰ฝ": 651, "์Šˆ": 652, "์Š": 653, "์Šค": 654, "์Šจ": 655, "์Šฌ": 656, "์Šด": 657, "์Šต": 658, "์Šท": 659, "์Šน": 660, "์‹œ": 661, "์‹": 662, "์‹ ": 663, "์‹ค": 664, "์‹ซ": 665, "์‹ฌ": 666, "์‹ญ": 667, "์‹ฑ": 668, "์‹ถ": 669, "์‹ธ": 670, "์‹น": 671, "์‹ผ": 672, "์Œ€": 673, "์Œˆ": 674, "์ŒŒ": 675, "์Œ": 676, "์Œ“": 677, "์จ": 678, "์ฉ": 679, "์ฐ": 680, "์ผ": 681, "์˜": 682, "์œ": 683, "์Ÿ": 684, "์ ": 685, "์‘ค": 686, "์“ฐ": 687, "์“ด": 688, "์“ธ": 689, "์”€": 690, "์”": 691, "์”Œ": 692, "์”จ": 693, "์”ฉ": 694, "์”ฌ": 695, "์”ธ": 696, "์”ป": 697, "์•„": 698, "์•…": 699, "์•ˆ": 700, "์•‰": 701, "์•Š": 702, "์•Œ": 703, "์•“": 704, "์•”": 705, "์••": 706, "์•—": 707, "์•˜": 708, "์•™": 709, "์•ž": 710, "์• ": 711, "์•ก": 712, "์•ค": 713, "์•จ": 714, "์•ฑ": 715, "์•ต": 716, "์•ผ": 717, "์•ฝ": 718, "์–‡": 719, "์–‘": 720, "์–—": 721, "์–˜": 722, "์–ด": 723, "์–ต": 724, "์–ธ": 725, "์–น": 726, "์–ป": 727, "์–ผ": 728, "์–ฝ": 729, "์—„": 730, "์—…": 731, "์—†": 732, "์—‡": 733, "์—ˆ": 734, "์—‰": 735, "์—Ž": 736, "์—": 737, "์—‘": 738, "์—”": 739, "์—˜": 740, "์— ": 741, "์—ก": 742, "์—ฃ": 743, "์—ฌ": 744, "์—ญ": 745, "์—ฐ": 746, "์—ด": 747, "์—ท": 748, "์—ผ": 749, "์—ฝ": 750, "์—ฟ": 751, "์˜€": 752, "์˜": 753, "์˜†": 754, "์˜ˆ": 755, "์˜›": 756, "์˜ค": 757, "์˜ฅ": 758, "์˜จ": 759, "์˜ฌ": 760, "์˜ฎ": 761, "์˜ณ": 762, "์˜ด": 763, "์˜ต": 764, "์˜ท": 765, "์˜น": 766, "์™€": 767, "์™„": 768, "์™ˆ": 769, "์™”": 770, "์™•": 771, "์™œ": 772, "์™ธ": 773, "์™ผ": 774, "์š”": 775, "์š•": 776, "์šฉ": 777, "์šฐ": 778, "์šฑ": 779, "์šด": 780, "์šธ": 781, "์›€": 782, "์›": 783, "์›ƒ": 784, "์›…": 785, "์›Œ": 786, "์›": 787, "์›”": 788, "์› ": 789, "์›จ": 790, "์›ฌ": 791, "์›น": 792, "์œ„": 793, "์œˆ": 794, "์œŒ": 795, "์œ—": 796, "์œ™": 797, "์œ ": 798, "์œก": 799, "์œค": 800, "์œจ": 801, "์œต": 802, "์œผ": 803, "์€": 804, "์„": 805, "์Œ": 806, "์": 807, "์‘": 808, "์˜": 809, "์ด": 810, "์ต": 811, "์ธ": 812, "์ผ": 813, "์ฝ": 814, "์žƒ": 815, "์ž„": 816, "์ž…": 817, "์ž‡": 818, "์žˆ": 819, "์ž‰": 820, "์žŠ": 821, "์žŽ": 822, "์ž": 823, "์ž‘": 824, "์ž”": 825, "์ž–": 826, "์ž˜": 827, "์ž ": 828, "์žก": 829, "์žฃ": 830, "์žฅ": 831, "์žฆ": 832, "์žฌ": 833, "์žญ": 834, "์žฐ": 835, "์žฝ": 836, "์Ÿ": 837, "์ €": 838, "์ ": 839, "์ „": 840, "์ ˆ": 841, "์ Š": 842, "์ ‹": 843, "์ ": 844, "์ ‘": 845, "์ “": 846, "์ •": 847, "์ –": 848, "์ œ": 849, "์ ": 850, "์  ": 851, "์ ค": 852, "์ ธ": 853, "์ ผ": 854, "์กŒ": 855, "์กฐ": 856, "์กฑ": 857, "์กด": 858, "์กธ": 859, "์ข€": 860, "์ข": 861, "์ข…": 862, "์ข‹": 863, "์ขŒ": 864, "์ฃ„": 865, "์ฃ ": 866, "์ฃผ": 867, "์ฃฝ": 868, "์ค€": 869, "์ค„": 870, "์ค": 871, "์ค‘": 872, "์ค˜": 873, "์คฌ": 874, "์ฅ": 875, "์ฅ”": 876, "์ฅ˜": 877, "์ฅฌ": 878, "์ฆˆ": 879, "์ฆ‰": 880, "์ฆŒ": 881, "์ฆ": 882, "์ฆ˜": 883, "์ฆ": 884, "์ง€": 885, "์ง": 886, "์ง„": 887, "์งˆ": 888, "์งŠ": 889, "์ง": 890, "์ง‘": 891, "์ง“": 892, "์ง•": 893, "์ง–": 894, "์ง™": 895, "์งš": 896, "์งœ": 897, "์ง": 898, "์งง": 899, "์งฌ": 900, "์งธ": 901, "์จŒ": 902, "์ฉŒ": 903, "์ฉ": 904, "์ฉ”": 905, "์ฉœ": 906, "์ชผ": 907, "์ชฝ": 908, "์ซ„": 909, "์ซ“": 910, "์ญ‰": 911, "์ฏค": 912, "์ฐŒ": 913, "์ฐ": 914, "์ฐ”": 915, "์ฐข": 916, "์ฐง": 917, "์ฐจ": 918, "์ฐฉ": 919, "์ฐฌ": 920, "์ฐฎ": 921, "์ฐฐ": 922, "์ฐธ": 923, "์ฐป": 924, "์ฐฝ": 925, "์ฐพ": 926, "์ฑ„": 927, "์ฑ…": 928, "์ฑŒ": 929, "์ฑ”": 930, "์ฑ™": 931, "์ฑ ": 932, "์ฒ˜": 933, "์ฒ™": 934, "์ฒœ": 935, "์ฒ ": 936, "์ฒจ": 937, "์ฒฉ": 938, "์ฒซ": 939, "์ฒญ": 940, "์ฒด": 941, "์ฒธ": 942, "์ฒผ": 943, "์ณ‡": 944, "์ณ": 945, "์ณค": 946, "์ดˆ": 947, "์ด‰": 948, "์ดŒ": 949, "์ด˜": 950, "์ด›": 951, "์ด": 952, "์ดจ": 953, "์ดฌ": 954, "์ตœ": 955, "์ถ”": 956, "์ถ•": 957, "์ถ˜": 958, "์ถœ": 959, "์ถค": 960, "์ถฉ": 961, "์ถฐ": 962, "์ทจ": 963, "์ธ ": 964, "์ธก": 965, "์ธฐ": 966, "์ธต": 967, "์น˜": 968, "์น™": 969, "์นœ": 970, "์น ": 971, "์นจ": 972, "์นฉ": 973, "์นซ": 974, "์นญ": 975, "์นด": 976, "์นธ": 977, "์นผ": 978, "์บ‰": 979, "์บ": 980, "์บ”": 981, "์บ˜": 982, "์บ ": 983, "์ปค": 984, "์ปฅ": 985, "์ปจ": 986, "์ปซ": 987, "์ปด": 988, "์ปต": 989, "์ปท": 990, "์ปธ": 991, "์ผ€": 992, "์ผˆ": 993, "์ผ": 994, "์ผ‘": 995, "์ผ“": 996, "์ผœ": 997, "์ผฐ": 998, "์ฝ”": 999, "์ฝ˜": 1000, "์ฝœ": 1001, "์ฝค": 1002, "์ฝฅ": 1003, "์ฝง": 1004, "์ฝฉ": 1005, "์พŒ": 1006, "์ฟ„": 1007, "์ฟ ": 1008, "์ฟก": 1009, "์ฟจ": 1010, "์ฟผ": 1011, "ํ€ด": 1012, "ํ": 1013, "ํฌ": 1014, "ํฐ": 1015, "ํด": 1016, "ํผ": 1017, "ํ‚ค": 1018, "ํ‚ฅ": 1019, "ํ‚จ": 1020, "ํ‚ฌ": 1021, "ํ‚ท": 1022, "ํ‚น": 1023, "ํƒ€": 1024, "ํƒ": 1025, "ํƒ„": 1026, "ํƒˆ": 1027, "ํƒ": 1028, "ํƒ‘": 1029, "ํƒ“": 1030, "ํƒ•": 1031, "ํƒœ": 1032, "ํƒ": 1033, "ํƒ ": 1034, "ํƒฌ": 1035, "ํƒฑ": 1036, "ํ„ฐ": 1037, "ํ„ฑ": 1038, "ํ„ด": 1039, "ํ„ธ": 1040, "ํ…ƒ": 1041, "ํ……": 1042, "ํ…Œ": 1043, "ํ…": 1044, "ํ…": 1045, "ํ…”": 1046, "ํ…œ": 1047, "ํ…ผ": 1048, "ํ† ": 1049, "ํ†ก": 1050, "ํ†ค": 1051, "ํ†จ": 1052, "ํ†ฐ": 1053, "ํ†ต": 1054, "ํ‡ด": 1055, "ํˆฌ": 1056, "ํˆด": 1057, "ํˆผ": 1058, "ํ‰": 1059, "ํŠ€": 1060, "ํŠœ": 1061, "ํŠฌ": 1062, "ํŠธ": 1063, "ํŠน": 1064, "ํŠผ": 1065, "ํŠฟ": 1066, "ํ‹€": 1067, "ํ‹ˆ": 1068, "ํ‹ฐ": 1069, "ํ‹ฑ": 1070, "ํ‹ด": 1071, "ํ‹ธ": 1072, "ํŒ€": 1073, "ํŒ…": 1074, "ํŒŒ": 1075, "ํŒ": 1076, "ํŒŽ": 1077, "ํŒ": 1078, "ํŒ”": 1079, "ํŒœ": 1080, "ํŒก": 1081, "ํŒจ": 1082, "ํŒฉ": 1083, "ํŒฌ": 1084, "ํŒฐ": 1085, "ํŒป": 1086, "ํŒฝ": 1087, "ํผ": 1088, "ํŽ€": 1089, "ํŽ„": 1090, "ํŽŒ": 1091, "ํŽ˜": 1092, "ํŽœ": 1093, "ํŽ ": 1094, "ํŽซ": 1095, "ํŽด": 1096, "ํŽธ": 1097, "ํŽผ": 1098, "ํ„": 1099, "ํˆ": 1100, "ํ‰": 1101, "ํ": 1102, "ํฌ": 1103, "ํญ": 1104, "ํฐ": 1105, "ํด": 1106, "ํผ": 1107, "ํ‘œ": 1108, "ํ‘ธ": 1109, "ํ‘น": 1110, "ํ‘ผ": 1111, "ํ’€": 1112, "ํ’ˆ": 1113, "ํ’‹": 1114, "ํ’": 1115, "ํ“จ": 1116, "ํ“ฐ": 1117, "ํ”„": 1118, "ํ”ˆ": 1119, "ํ”Œ": 1120, "ํ””": 1121, "ํ”ผ": 1122, "ํ”ฝ": 1123, "ํ•€": 1124, "ํ•„": 1125, "ํ•": 1126, "ํ•‘": 1127, "ํ•˜": 1128, "ํ•™": 1129, "ํ•œ": 1130, "ํ• ": 1131, "ํ•จ": 1132, "ํ•ฉ": 1133, "ํ•ซ": 1134, "ํ•ญ": 1135, "ํ•ด": 1136, "ํ•ต": 1137, "ํ•ธ": 1138, "ํ–‡": 1139, "ํ–ˆ": 1140, "ํ–‰": 1141, "ํ–ฅ": 1142, "ํ—ˆ": 1143, "ํ—Œ": 1144, "ํ—": 1145, "ํ—˜": 1146, "ํ—": 1147, "ํ—ค": 1148, "ํ—จ": 1149, "ํ—ฌ": 1150, "ํ—ด": 1151, "ํ—ท": 1152, "ํ˜€": 1153, "ํ˜": 1154, "ํ˜„": 1155, "ํ˜ˆ": 1156, "ํ˜": 1157, "ํ˜‘": 1158, "ํ˜”": 1159, "ํ˜•": 1160, "ํ˜œ": 1161, "ํ˜ธ": 1162, "ํ˜น": 1163, "ํ˜ผ": 1164, "ํ™€": 1165, "ํ™ˆ": 1166, "ํ™‰": 1167, "ํ™": 1168, "ํ™”": 1169, "ํ™•": 1170, "ํ™˜": 1171, "ํ™œ": 1172, "ํ™ฉ": 1173, "ํšŒ": 1174, "ํš": 1175, "ํšก": 1176, "ํšจ": 1177, "ํ›„": 1178, "ํ›ˆ": 1179, "ํ›Œ": 1180, "ํ›ค": 1181, "ํ›จ": 1182, "ํ›ผ": 1183, "ํœ˜": 1184, "ํœฉ": 1185, "ํœด": 1186, "ํ‰": 1187, "ํ": 1188, "ํ‘": 1189, "ํ”": 1190, "ํ˜": 1191, "ํ™": 1192, "ํ ": 1193, "ํก": 1194, "ํฅ": 1195, "ํฉ": 1196, "ํฌ": 1197, "ํฐ": 1198, "ํžˆ": 1199, "ํžŒ": 1200, "ํž": 1201, "ํž˜": 1202, "|": 0, "[UNK]": 1203, "[PAD]": 1204}