|
from typing import List, Optional, Tuple, Union |
|
import torch |
|
import torch.multiprocessing as mp |
|
|
|
from transformers import MistralModel, MistralPreTrainedModel, MistralConfig |
|
from transformers.modeling_outputs import BaseModelOutputWithPast |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.models.mistral.modeling_mistral import MistralDecoderLayer, MistralRMSNorm, MistralAttention, MistralFlashAttention2, MistralSdpaAttention, MistralMLP |
|
from torch import Tensor, nn, device |
|
from transformers.utils import logging |
|
|
|
from .attn_mask_utils import _prepare_4d_causal_attention_mask |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class ModifiedMistralAttention(MistralAttention): |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.is_causal = False |
|
|
|
|
|
class ModifiedMistralFlashAttention2(MistralFlashAttention2): |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.is_causal = False |
|
|
|
|
|
class ModifiedMistralSdpaAttention(MistralSdpaAttention): |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.is_causal = False |
|
|
|
|
|
MISTRAL_ATTENTION_CLASSES = { |
|
"eager": ModifiedMistralAttention, |
|
"flash_attention_2": ModifiedMistralFlashAttention2, |
|
"sdpa": ModifiedMistralSdpaAttention, |
|
} |
|
|
|
class ModifiedMistralDecoderLayer(MistralDecoderLayer): |
|
def __init__(self, config: MistralConfig, layer_idx: int): |
|
nn.Module.__init__(self) |
|
self.hidden_size = config.hidden_size |
|
|
|
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) |
|
|
|
self.mlp = MistralMLP(config) |
|
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
class MistralEncoderModel(MistralModel): |
|
def __init__(self, config: MistralConfig): |
|
MistralPreTrainedModel.__init__(self, config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[ModifiedMistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" |
|
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
if not self._use_flash_attention_2: |
|
self.config.sliding_window = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
past_key_values_length = 0 |
|
|
|
if use_cache: |
|
use_legacy_cache = not isinstance(past_key_values, Cache) |
|
if use_legacy_cache: |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
past_key_values_length = past_key_values.get_usable_length(seq_length) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if attention_mask is not None and self._use_flash_attention_2 and use_cache: |
|
is_padding_right = attention_mask[:, -1].sum().item() != batch_size |
|
if is_padding_right: |
|
raise ValueError( |
|
"You are attempting to perform batched generation with padding_side='right'" |
|
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " |
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
) |
|
|
|
if self._use_flash_attention_2: |
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
else: |
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=self.config.sliding_window, |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |