import os import os.path as osp import numpy as np import argparse import pickle from tqdm import tqdm import time import random import imageio import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader from lib.utils.tools import * from lib.utils.learning import * from lib.utils.utils_data import flip_data from lib.utils.utils_mesh import flip_thetas_batch from lib.data.dataset_wild import WildDetDataset # from lib.model.loss import * from lib.model.model_mesh import MeshRegressor from lib.utils.vismo import render_and_save, motion2video_mesh from lib.utils.utils_smpl import * from scipy.optimize import least_squares def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default="configs/mesh/MB_ft_pw3d.yaml", help="Path to the config file.") parser.add_argument('-e', '--evaluate', default='checkpoint/mesh/FT_MB_release_MB_ft_pw3d/best_epoch.bin', type=str, metavar='FILENAME', help='checkpoint to evaluate (file name)') parser.add_argument('-j', '--json_path', type=str, help='alphapose detection result json path') parser.add_argument('-v', '--vid_path', type=str, help='video path') parser.add_argument('-o', '--out_path', type=str, help='output path') parser.add_argument('--ref_3d_motion_path', type=str, default=None, help='3D motion path') parser.add_argument('--pixel', action='store_true', help='align with pixle coordinates') parser.add_argument('--focus', type=int, default=None, help='target person id') parser.add_argument('--clip_len', type=int, default=243, help='clip length for network input') opts = parser.parse_args() return opts def err(p, x, y): return np.linalg.norm(p[0] * x + np.array([p[1], p[2], p[3]]) - y, axis=-1).mean() def solve_scale(x, y): print('Estimating camera transformation.') best_res = 100000 best_scale = None for init_scale in tqdm(range(0,2000,5)): p0 = [init_scale, 0.0, 0.0, 0.0] est = least_squares(err, p0, args = (x.reshape(-1,3), y.reshape(-1,3))) if est['fun'] < best_res: best_res = est['fun'] best_scale = est['x'][0] print('Pose matching error = %.2f mm.' % best_res) return best_scale opts = parse_args() args = get_config(opts.config) # root_rel # args.rootrel = True smpl = SMPL(args.data_root, batch_size=1).cuda() J_regressor = smpl.J_regressor_h36m end = time.time() model_backbone = load_backbone(args) print(f'init backbone time: {(time.time()-end):02f}s') end = time.time() model = MeshRegressor(args, backbone=model_backbone, dim_rep=args.dim_rep, hidden_dim=args.hidden_dim, dropout_ratio=args.dropout) print(f'init whole model time: {(time.time()-end):02f}s') if torch.cuda.is_available(): model = nn.DataParallel(model) model = model.cuda() chk_filename = opts.evaluate if opts.evaluate else opts.resume print('Loading checkpoint', chk_filename) checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage) model.load_state_dict(checkpoint['model'], strict=True) model.eval() testloader_params = { 'batch_size': 1, 'shuffle': False, 'num_workers': 8, 'pin_memory': True, 'prefetch_factor': 4, 'persistent_workers': True, 'drop_last': False } vid = imageio.get_reader(opts.vid_path, 'ffmpeg') fps_in = vid.get_meta_data()['fps'] vid_size = vid.get_meta_data()['size'] os.makedirs(opts.out_path, exist_ok=True) if opts.pixel: # Keep relative scale with pixel coornidates wild_dataset = WildDetDataset(opts.json_path, clip_len=opts.clip_len, vid_size=vid_size, scale_range=None, focus=opts.focus) else: # Scale to [-1,1] wild_dataset = WildDetDataset(opts.json_path, clip_len=opts.clip_len, scale_range=[1,1], focus=opts.focus) test_loader = DataLoader(wild_dataset, **testloader_params) verts_all = [] reg3d_all = [] with torch.no_grad(): for batch_input in tqdm(test_loader): batch_size, clip_frames = batch_input.shape[:2] if torch.cuda.is_available(): batch_input = batch_input.cuda().float() output = model(batch_input) batch_input_flip = flip_data(batch_input) output_flip = model(batch_input_flip) output_flip_pose = output_flip[0]['theta'][:, :, :72] output_flip_shape = output_flip[0]['theta'][:, :, 72:] output_flip_pose = flip_thetas_batch(output_flip_pose) output_flip_pose = output_flip_pose.reshape(-1, 72) output_flip_shape = output_flip_shape.reshape(-1, 10) output_flip_smpl = smpl( betas=output_flip_shape, body_pose=output_flip_pose[:, 3:], global_orient=output_flip_pose[:, :3], pose2rot=True ) output_flip_verts = output_flip_smpl.vertices.detach() J_regressor_batch = J_regressor[None, :].expand(output_flip_verts.shape[0], -1, -1).to(output_flip_verts.device) output_flip_kp3d = torch.matmul(J_regressor_batch, output_flip_verts) # (NT,17,3) output_flip_back = [{ 'verts': output_flip_verts.reshape(batch_size, clip_frames, -1, 3) * 1000.0, 'kp_3d': output_flip_kp3d.reshape(batch_size, clip_frames, -1, 3), }] output_final = [{}] for k, v in output_flip_back[0].items(): output_final[0][k] = (output[0][k] + output_flip_back[0][k]) / 2.0 output = output_final verts_all.append(output[0]['verts'].cpu().numpy()) reg3d_all.append(output[0]['kp_3d'].cpu().numpy()) verts_all = np.hstack(verts_all) verts_all = np.concatenate(verts_all) reg3d_all = np.hstack(reg3d_all) reg3d_all = np.concatenate(reg3d_all) if opts.ref_3d_motion_path: ref_pose = np.load(opts.ref_3d_motion_path) x = ref_pose - ref_pose[:, :1] y = reg3d_all - reg3d_all[:, :1] scale = solve_scale(x, y) root_cam = ref_pose[:, :1] * scale verts_all = verts_all - reg3d_all[:,:1] + root_cam render_and_save(verts_all, osp.join(opts.out_path, 'mesh.mp4'), keep_imgs=False, fps=fps_in, draw_face=True)