Update README.md
Browse files
README.md
CHANGED
@@ -1,72 +1,80 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- wangkevin02/LMSYS-USP
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
base_model:
|
10 |
+
- allenai/longformer-base-4096
|
11 |
+
---
|
12 |
+
# AI Detect Model
|
13 |
+
|
14 |
+
## Model Description
|
15 |
+
|
16 |
+
The **AI Detect Model** is a binary classification model designed to determine whether a given text is AI-generated (label=1) or written by a human (label=0). This model plays a crucial role in providing AI detection rewards, helping to prevent reward hacking during Reinforcement Learning with Cycle Consistency (RLCC). For more details, please refer to [our paper](https://tongyi.aliyun.com/qianwen/?sessionId=ea3bbcf36a2346a0a7819b06fcb36a1c#).
|
17 |
+
|
18 |
+
This model is built upon the [Longformer](https://huggingface.co/allenai/longformer-base-4096) architecture and trained using our proprietary [LMSYS-USP](https://huggingface.co/datasets/wangkevin02/LMSYS-USP) dataset. Specifically, in a dialogue context, texts generated by the assistant are labeled as AI-generated (label=1), while user-generated texts are assigned the opposite label (label=0).
|
19 |
+
|
20 |
+
> *Note*: Our model is subject to the following constraints:
|
21 |
+
>
|
22 |
+
> 1. **Maximum Context Length**: Supports up to **4,096 tokens**. Exceeding this may degrade performance; keep inputs within this limit for best results.
|
23 |
+
> 2. **Language Limitation**: Optimized for English. Non-English performance may vary due to limited training data.
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
## Quick Start
|
28 |
+
|
29 |
+
You can utilize our AI detection model as demonstrated below:
|
30 |
+
|
31 |
+
```python
|
32 |
+
from transformers import LongformerTokenizer, LongformerForSequenceClassification
|
33 |
+
import torch
|
34 |
+
import torch.nn.functional as F
|
35 |
+
|
36 |
+
class AIDetector:
|
37 |
+
def __init__(self, model_name="allenai/longformer-base-4096", max_length=4096):
|
38 |
+
"""
|
39 |
+
Initialize the AIDetector with a pretrained Longformer model and tokenizer.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
model_name (str): The name or path of the pretrained Longformer model.
|
43 |
+
max_length (int): The maximum sequence length for tokenization.
|
44 |
+
"""
|
45 |
+
self.tokenizer = LongformerTokenizer.from_pretrained(model_name)
|
46 |
+
self.model = LongformerForSequenceClassification.from_pretrained(model_name)
|
47 |
+
self.model.eval()
|
48 |
+
self.max_length = max_length
|
49 |
+
self.tokenizer.padding_side = "right"
|
50 |
+
|
51 |
+
@torch.no_grad()
|
52 |
+
def get_probability(self, texts):
|
53 |
+
inputs = self.tokenizer(texts, padding=True, truncation=True, max_length=self.max_length, return_tensors='pt')
|
54 |
+
outputs = self.model(**inputs)
|
55 |
+
probabilities = F.softmax(outputs.logits, dim=1)
|
56 |
+
return probabilities
|
57 |
+
|
58 |
+
# Example usage
|
59 |
+
if __name__ == "__main__":
|
60 |
+
classifier = AIDetector(model_name="/path/to/ai_detector")
|
61 |
+
target_text = [
|
62 |
+
"I am thinking about going away for vacation",
|
63 |
+
"How can I help you today?"
|
64 |
+
]
|
65 |
+
result = classifier.get_probability(target_text)
|
66 |
+
print(result)
|
67 |
+
# >>> Expected Output:
|
68 |
+
# >>> tensor([[0.9954, 0.0046],
|
69 |
+
# >>> [0.0265, 0.9735]])
|
70 |
+
```
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
## Citation
|
75 |
+
|
76 |
+
If you find this model useful, please cite:
|
77 |
+
|
78 |
+
```plaintext
|
79 |
+
[Authors], "[Paper Title]," [Venue], [Year], [URL or DOI].
|
80 |
+
```
|